Skip to Main Content
Deep Reinforcement Learning Hands-On
book

Deep Reinforcement Learning Hands-On

by Oleg Vasilev, Maxim Lapan, Martijn van Otterlo, Mikhail Yurushkin, Basem O. F. Alijla
June 2018
Intermediate to advanced content levelIntermediate to advanced
546 pages
13h 30m
English
Packt Publishing
Content preview from Deep Reinforcement Learning Hands-On

DQN on Pong

Before we jump into the code, some introduction is needed. Our examples are becoming increasingly challenging and complex, which is not surprising, as the complexity of problems we're trying to tackle is also growing. The examples are as simple and concise as possible, but some of the code may be difficult to understand at first.

Another thing to note is performance. Our previous examples for FrozenLake, or CartPole, were not demanding from a performance perspective, as observations were small, neural network parameters were tiny, and shaving off extra milliseconds in the training loop wasn't important. However, from now on, that's not the case anymore. One single observation from the Atari environment is 100k values, which has to be ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Grokking Deep Reinforcement Learning

Grokking Deep Reinforcement Learning

Miguel Morales

Publisher Resources

ISBN: 9781788834247Supplemental Content