Skip to Main Content
Deep Reinforcement Learning Hands-On
book

Deep Reinforcement Learning Hands-On

by Oleg Vasilev, Maxim Lapan, Martijn van Otterlo, Mikhail Yurushkin, Basem O. F. Alijla
June 2018
Intermediate to advanced content levelIntermediate to advanced
546 pages
13h 30m
English
Packt Publishing
Content preview from Deep Reinforcement Learning Hands-On

Adding an extra A to A2C

From the practical point of view, communicating with several parallel environments is simple and we've already done this in the previous chapter, but haven't stated it explicitly. In the A2C agent, we passed an array of Gym environments into the ExperienceSource class, which switched it into the round-robin data gathering mode: every time we asked for a transition from the experience source, the class uses the next environment from our array (of course, keeping the state for every environment). This simple approach is equivalent to parallel communication with environments, but with one single difference: communication is not parallel in the strict sense, but performed in a serial way. However, samples from our experience ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Grokking Deep Reinforcement Learning

Grokking Deep Reinforcement Learning

Miguel Morales

Publisher Resources

ISBN: 9781788834247Supplemental Content