Dependency Grammar and Tagging with SpaCy

Video description

Dependency grammar is a powerful way to represent syntactic relationships within a sentence. More sophisticated than bag-of-words representations, it's used in natural language processing tasks like feature engineering, opinion mining, information retrieval, and relation extraction. In this course, which is designed for basic to intermediate level Python programmers, you'll learn how to represent dependency grammar as an extension to valency grammar and use it with spaCy.

  • Discover valency grammar and how it's used to express word relationships
  • Understand dependency grammar as a typed extension to valency grammar
  • Explore the expressivity, assumptions, and limitations of dependency grammar
  • Learn how to traverse parses with spaCy for various applications
  • Gain experience training a spaCy parser on a Twitter dataset
Aaron Kramer is a data scientist and engineer with Los Angeles based DataScience Inc. He is a spaCY contributor who holds a BA in Economics from Swarthmore College and is the author of multiple O'Reilly titles on the subject of natural language processing.

Publisher resources

Download Example Code

Product information

  • Title: Dependency Grammar and Tagging with SpaCy
  • Author(s): Aaron Kramer
  • Release date: March 2017
  • Publisher(s): Infinite Skills
  • ISBN: 9781491982044