Dielectric Materials for Electrical Engineering

Book description

Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric polymers.

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Part 1: General Physics Phenomena
    1. Chapter 1: Physics of Dielectrics
      1. 1.1. Definitions
      2. 1.2. Different types of polarization
        1. 1.2.1. Non-polar solids
        2. 1.2.2. Polar solids
        3. 1.2.3. Electronic polarization
        4. 1.2.4. Ionic polarization
        5. 1.2.5. Orientation polarization
        6. 1.2.6. Interfacial or space-charge polarization
        7. 1.2.7. Comments
      3. 1.3. Macroscopic aspects of the polarization
        1. 1.3.1. Polarization of solids with metallic bonding
        2. 1.3.2. Polarization of iono-covalent solids
        3. 1.3.3. Notion of polarization charges
        4. 1.3.4. Average field in a neutral medium
        5. 1.3.5. Medium containing excess charges
        6. 1.3.6. Local field
        7. 1.3.7. Frequency response of a dielectric
      4. 1.4. Bibliography
    2. Chapter 2: Physics of Charged Dielectrics: Mobility and Charge Trapping
      1. 2.1. Introduction
      2. 2.2. Localization of a charge in an “ideally perfect” and pure polarizable medium
        1. 2.2.1. Consideration of the polarization
        2. 2.2.2. Coupling of a charge with a polarizable medium: electrostatic approach
        3. 2.2.3. Coupling of a charge with a polarizable medium: quantum approach
          1. 2.2.3.1. Coupling with the electronic polarization field
          2. 2.2.3.2. Coupling with the ionic polarization field
        4. 2.2.4. Conduction mechanisms
          1. 2.2.4.1. Low-temperature conduction
          2. 2.2.4.2. Conduction at high temperature
          3. 2.2.4.3. Comments
      3. 2.3. Localization and trapping of carriers in a real material
        1. 2.3.1. Localization and trapping of the small polaron
        2. 2.3.2. Localization and intrinsic trapping of the carriers
        3. 2.3.3. Trapping on structure defects and impurities
        4. 2.3.4. Localization related to disorder
        5. 2.3.5. Mechanical energy related to the trapping of one charge
      4. 2.4. Detrapping
        1. 2.4.1. Thermal detrapping
        2. 2.4.2. Detrapping under an electric field by the Poole-Frankel effect
      5. 2.5. Bibliography
    3. Chapter 3: Conduction Mechanisms and Numerical Modeling of Transport in Organic Insulators: Trends and Perspectives
      1. 3.1. Introduction
      2. 3.2. Molecular modeling applied to polymers
        1. 3.2.1. Energy diagram: from the n-alkanes to polyethylene
        2. 3.2.2. Results of modeling
          1. 3.2.2.1. N-alkanes models of polyethylene
          2. 3.2.2.2. Volume properties: amorphous and crystalline phases
          3. 3.2.2.3. Surface and nano-void properties
          4. 3.2.2.4. Trapping sites
            1. 3.2.2.4.1. Physical defects
            2. 3.2.2.4.2. Chemical defects
          5. 3.2.2.5. Self-trapping and polaron concept
      3. 3.3. Macroscopic models
        1. 3.3.1. Elementary processes
          1. 3.3.1.1. Generation of charges
            1. 3.3.1.1.1. Electrode injection
            2. 3.3.1.1.2. Internal generation
            3. 3.3.1.1.3. Carrier extraction
          2. 3.3.1.2. Charge transport
            1. 3.3.1.2.1. Hopping conduction
            2. 3.3.1.2.2. Poole–Frenkel Effect
            3. 3.3.1.2.3. SCLC models
            4. 3.3.1.2.4. Ionic conduction
            5. 3.3.1.2.5. Diffusion
            6. 3.3.1.2.6. Mobility
        2. 3.3.2. Some models characterizing the experimental behavior
          1. 3.3.2.1. Transient current models
          2. 3.3.2.2. Models associated with the space charge measurements
          3. 3.3.2.3. High field models
      4. 3.4. Trends and perspectives
        1. 3.4.1. Unification of atomistic and macroscopic approaches
        2. 3.4.2. Interface behavior
        3. 3.4.3. Physical models for transport in volume
          1. 3.4.3.1. Identification of the nature of carriers
          2. 3.4.3.2. Trap identification
        4. 3.4.4. Degradation induced by a charge and/or a field
        5. 3.4.5. Contribution of the physics of non-insulating organic materials
      5. 3.5. Conclusions
      6. 3.6. Bibliography
    4. Chapter 4: Dielectric Relaxation in Polymeric Materials
      1. 4.1. Introduction
      2. 4.2. Dynamics of polarization mechanisms
        1. 4.2.1. Electronic and ionic polarization
        2. 4.2.2. Dipolar polarization
        3. 4.2.3. Maxwell- Wagner–Sillars polarization
        4. 4.2.4. Interfacial polarization
      3. 4.3. Orientation polarization in the time domain
        1. 4.3.1. Single relaxation time model
        2. 4.3.2. Discrete distribution of relaxation times
        3. 4.3.3. Continuous distribution of relaxation times
        4. 4.3.4. Stretched exponential: Kohlrausch–Williams–Watts equation
      4. 4.4. Orientation polarization in the frequency domain
        1. 4.4.1. Single relaxation time model: the Debye equation
        2. 4.4.2. Discrete distribution of relaxation times
        3. 4.4.3. Continuous distribution of relaxation times
        4. 4.4.4. Parametric analytical expressions
          1. 4.4.4.1. Cole–Cole equation
          2. 4.4.4.2. Havriliak and Negami equation
          3. 4.4.4 3. Cole–Cole representation
        5. 4.4.5. Kramers–Kronig relations
      5. 4.5. Temperature dependence
        1. 4.5.1. Shift factor
          1. 4.5.1.1. Time domain
          2. 4.5.1.2. Frequency domain
        2. 4.5.2. Crystalline or vitreous phases: Arrhenius equation
          1. 4.5.2.1. Thermal activation mechanism
          2. 4.5.2.2. Interpretation of the activation parameters
        3. 4.5.3. Vitreous phases in the transition zone: the Hoffman–Williams–Passaglia equation
        4. 4.5.4. Liquid phases: Vogel–Fulcher–Tammann equation (VFT)
          1. 4.5.4.1. Free volume concept
          2. 4.5.4.2. Williams–Landel–Ferry empirical expression (WLF)
      6. 4.6. Relaxation modes of amorphous polymers
        1. 4.6.1. Primary relaxation mode
          1. 4.6.1.1. Complex relaxation in an homogenous liquid medium
          2. 4.6.1.2. Discrete spectrum of simple relaxations in a heterogenous vitreous medium
        2. 4.6.2. Secondary relaxation modes
          1. 4.6.2.1. Specific mobility of the chemical structure
          2. 4.6.2.2. Mobility of the main chain
      7. 4.7. Relaxation modes of semi-crystalline polymers
        1. 4.7.1. Complex relaxation in an homogenous medium
        2. 4.7.2. Discrete spectrum of elementary relaxations in a heterogenous medium
        3. 4.7.3. Universality of the behavior laws in semi-crystalline polymers
      8. 4.8. Conclusion
      9. 4.9. Bibliography
    5. Chapter 5: Electrification
      1. 5.1. Introduction
      2. 5.2. Electrification of solid bodies by separation/contact
        1. 5.2.1. The process
        2. 5.2.2. Charge transfer mechanism by the separation contact of two different conductors
        3. 5.2.3. Polymer-metal contact
        4. 5.2.4. Contact between two polymers
        5. 5.2.5. Triboelectric series
      3. 5.3. Electrification of solid particles
        1. 5.3.1. Theoretical work by Masuda et al.
        2. 5.3.2. Experimental work by Touchard et al. [TOU 91]
          1. 5.3.2.1. Experimental device
          2. 5.3.2.2. Results
            1. 5.3.2.2.1. Influence of the impact angle
            2. 5.3.2.2.2. Influence of the impact speed on the normal component
            3. 5.3.2.2.3. Influence of the size of the particles
            4. 5.3.2.2.4. Comparison of results obtained on the three targets
            5. 5.3.2.2.5. Evolution of the total charge of a particle according to the number of impacts
      4. 5.4. Conclusion
      5. 5.5. Bibliography
  5. Part 2: Phenomena Associated with Environmental Stress – Ageing
    1. Chapter 6: Space Charges: Definition, History, Measurement
      1. 6.1. Introduction
      2. 6.2. History
      3. 6.3. Space charge measurement methods in solid insulators
        1. 6.3.1. Destructive methods
          1. 6.3.1.1. The thermally stimulated current method
          2. 6.3.1.2. The mirror method
        2. 6.3.2. Non-destructive methods
          1. 6.3.2.1. Thermal methods
          2. 6.3.2.2. Pressure methods
      4. 6.4. Trends and perspectives
      5. 6.5. Bibliography
    2. Chapter 7: Dielectric Materials under Electron Irradiation in a Scanning Electron Microscope
      1. 7.1. Introduction
      2. 7.2. Fundamental aspects of electron irradiation of solids
        1. 7.2.1. Volume of interaction and penetration depth
        2. 7.2.2. The different emissions
          1. 7.2.2.1. Electron emission
            1. 7.2.2.1.1. Backscattered electrons
            2. 7.2.2.1.2. Secondary electron emission
              1. Mechanism
              2. Total emission yield
          2. 7.2.2.2. Emission of X-ray photons
      3. 7.3. Physics of insulators
        1. 7.3.1. General points
        2. 7.3.2. Insulators under electron irradiation
          1. 7.3.2.1. Microscopic phenomena
            1. 7.3.2.1.1. Secondary electron emission of insulators
            2. 7.3.2.1.2. Induced defects and desorption of species
            3. 7.3.2.1.3. Trapping and charge transport
              1. The different processes
              2. Mobility of charge carriers in disordered insulators
          2. 7.3.2.2. Macroscopic phenomena: charging effects
            1. 7.3.2.2.1. General law of conservation of current and induced charge
            2. 7.3.2.2.2. Self-regulation and conventional approach: sign of the induced charge
            3. 7.3.2.2.3. Deflection of the primary beam
              1. Partial deflection
              2. Total deflection: mirror effect
            4. 7.3.2.2.4. Chemical modifications and other irradiation effects
          3. 7.3.2.3. Parameters governing the charge phenomena
      4. 7.4. Applications: measurement of the trapped charge or the surface potential
        1. 7.4.1. Introduction
        2. 7.4.2. Static methods
          1. 7.4.2.1. Mirror method
          2. 7.4.2.2. Spectroscopic methods
            1. 7.4.2.2.1. X-ray spectroscopy
            2. 7.4.2.2.2. Electron spectroscopy
        3. 7.4.3. Dynamical methods
          1. 7.4.3.1. Method based on the deflection of the primary beam
          2. 7.4.3.2. Method based on electrostatic influence
            1. 7.4.3.2.1. Principle
            2. 7.4.3.2.2. Experimental device
      5. 7.5. Conclusion
      6. 7.6. Bibliography
    3. Chapter 8: Precursory Phenomena and Dielectric Breakdown of Solids
      1. 8.1. Introduction
      2. 8.2. Electrical breakdown
      3. 8.3. Precursory phenomena
        1. 8.3.1. Definition
        2. 8.3.2. Potential precursors
          1. 8.3.2.1. The material
          2. 8.3.2.2. Impurities
        3. 8.3.3. Induced precursors
          1. 8.3.3.1. Outgassing of the insulating material
          2. 8.3.3.2. Mechanical deformations
          3. 8.3.3.3. The frequency
          4. 8.3.3.4. Irradiations
        4. 8.3.4. Observed precursors
          1. 8.3.4.1. Electroluminescence
          2. 8.3.4.2. Pre-breakdown currents
          3. 8.3.4.3. Arborescence
          4. 8.3.4.4. Presence of electrical discharges
          5. 8.3.4.5. The case of transformers
      4. 8.4. Conclusion
      5. 8.5. Bibliography
    4. Chapter 9: Models for Ageing of Electrical Insulation: Trends and Perspectives
      1. 9.1. Introduction
      2. 9.2. Kinetic approach according to Zhurkov
        1. 9.2.1. Presentation
        2. 9.2.2. Interpretation of the process and introduction to the notion of a dilaton
          1. 9.2.2.1. Definition according to Zhurkov (1983)
          2. 9.2.2.2. Definition according to Kusov (1979)
          3. 9.2.2.3. Definition according to Petrov (1983)
          4. 9.2.2.4. Universal breakdown kinetics
      3. 9.3. Thermodynamic approach according to Crine
      4. 9.4. Microscopic approach according to Dissado–Mazzanti–Montanari
        1. 9.4.1. Thermal ageing
        2. 9.4.2. Ageing under electrical field: space charges effect
      5. 9.5. Conclusions and perspectives
      6. 9.6. Bibliography
  6. Part 3: Characterization Methods and Measurement
    1. Chapter 10: Response of an Insulating Material to an Electric Charge: Measurement and Modeling
      1. 10.1. Introduction
      2. 10.2. Standard experiments
      3. 10.3. Basic electrostatic equations
        1. 10.3.1. General equations
        2. 10.3.2. Current measurement at a fixed potential: case (a)
        3. 10.3.3. Voltage measurement at a fixed charge: case (b)
      4. 10.4. Dipolar polarization
        1. 10.4.1. Examples
      5. 10.5. Intrinsic conduction
        1. 10.5.1. Example: charged insulator irradiated by a high-energy electron beam
      6. 10.6. Space charge, injection and charge transport
        1. 10.6.1. Electrostatic models
          1. 10.6.1.1. Example: transient current measurements on polyethylene films
        2. 10.6.2. Models combining electrostatics and thermodynamics: the influence of trapping and dispersive transport
        3. 10.6.3. Purely thermodynamic models: current controlled by detrapping
          1. 10.6.3.1. Example 1: short-circuit current during the discharge of a polyethylene film
          2. 10.6.3.2. Example 2: voltage decay on a polystyrene film charged by an electron beam
        4. 10.6.4. Interface-limited charge injection
          1. 10.6.4.1. Example 1: stationary current in polypropylene films
          2. 10.6.4.2. Example 2: voltage decay on corona-charged films
      7. 10.7. Which model for which material?
      8. 10.8. Bibliography
    2. Chapter 11: Pulsed Electroacoustic Method: Evolution and Development Perspectives for Space Charge Measurement
      1. 11.1. Introduction
      2. 11.2. Principle of the method
        1. 11.2.1. General context
        2. 11.2.2. PEA device
        3. 11.2.3. Measurement description
        4. 11.2.4. Signal processing
        5. 11.2.5. Example of measurement
      3. 11.3. Performance of the method
        1. 11.3.1. Resolution in the thickness
        2. 11.3.2. Lateral resolution
        3. 11.3.3. Acquisition frequency
        4. 11.3.4. Signal/noise ratio
      4. 11.4. Diverse measurement systems
        1. 11.4.1. Measurements under high voltage
        2. 11.4.2. High and low temperature measurements
        3. 11.4.3. Measurements under lighting
        4. 11.4.4. 3D detection system
        5. 11.4.5. PEA system with high repetition speed
        6. 11.4.6. Portable system
        7. 11.4.7. Measurements under irradiation
        8. 11.4.8. Contactless system
      5. 11.5. Development perspectives and conclusions
      6. 11.6. Bibliography
    3. Chapter 12: FLIMM and FLAMM Methods: Localization of 3-D Space Charges at the Micrometer Scale
      1. 12.1. Introduction
      2. 12.2. The FLIMM method
        1. 12.2.1. Principle
        2. 12.2.2. Characteristic FLIMM equation
      3. 12.3. The FLAMM method
      4. 12.4. Modeling of the thermal gradient
      5. 12.5. Mathematical deconvolution
        1. 12.5.1. Virtual Space Charge Model
        2. 12.5.2. The scale transformation method
        3. 12.5.3. The regularization method
      6. 12.6. Results
        1. 12.6.1. 1-D study of PEN (Polyethylene Naphtalate) subjected to high fields
        2. 12.6.2. 2-D charge distribution
        3. 12.6.3. 3-D charge distributions
          1. 12.6.3.1. Sample preparation
          2. 12.6.3.2. 3-D cartographies
      7. 12.7. Conclusion
      8. 12.8. Bibliography
    4. Chapter 13: Space Charge Measurement by the Laser-Induced Pressure Pulse Technique
      1. 13.1. Introduction
      2. 13.2. History
      3. 13.3. Establishment of fundamental equations for the determination of space charge distribution
        1. 13.3.1. Specific case: uncharged or charged and short-circuited sample (V=0)
        2. 13.3.2. General case: charged sample submitted to an electrical potential difference
        3. 13.3.3. Application of a pressure wave
        4. 13.3.4. Relationships between measured signals and charge distribution
      4. 13.4. Experimental setup
        1. 13.4.1. Synoptic schema of the measurement setup
        2. 13.4.2. Generation of pressure
        3. 13.4.3. Signal recording
        4. 13.4.4. Calibration of the experimental setup
        5. 13.4.5. Signal processing
      5. 13.5. Performances and limitations
        1. 13.5.1. Performances
        2. 13.5.2. Limitations
      6. 13.6. Examples of use of the method
      7. 13.7. Use of the LIPP method for surface charge measurement
      8. 13.8. Perspectives
      9. 13.9. Bibliography
    5. Chapter 14: The Thermal Step Method for Space Charge Measurements
      1. 14.1. Introduction
      2. 14.2. Principle of the thermal step method (TSM)
        1. 14.2.1. The TSM in short circuit conditions
        2. 14.2.2. Evosec of the TSM for measurements under a continuous applied electric field
        3. 14.2.3. Calibration: use of measurements under low applied field for the determination of material parameters
      3. 14.3. Numerical resolution methods
      4. 14.4. Experimental set-up
        1. 14.4.1. Plate-type samples
        2. 14.4.2. Power cables
          1. 14.4.2.1. Measurements in short circuit conditions
          2. 14.4.2.2. Measurements under applied electric field
      5. 14.5. Applications
        1. 14.5.1. Materials
          1. 14.5.1.1. Influence of molar weight and cooling rate on the presence of space charges in polyethylene [TOU 98]
          2. 14.5.1.2. Revealing the heterogenity of composite materials (charged epoxy resin)
          3. 14.5.1.3. Evolution of space charges in materials for cables subjected to an alternative electrical constraint (50 Hz)
        2. 14.5.2. Components
          1. 14.5.2.1. Monitoring of the internal electric field of a cable subjected to electrical and thermal stress
          2. 14.5.2.2. Monitoring of the ageing of micaceous composite insulation from a power alternator winding
          3. 14.5.2.3. Characterization of Metal-Oxide-Semiconductor (MOS) structures for micro and nanoelectronics
      6. 14.6. Conclusion
      7. 14.7. Bibliography
    6. Chapter 15: Physico-Chemical Characterization Techniques of Dielectrics
      1. 15.1. Introduction
      2. 15.2. Domains of application
        1. 15.2.1. Transformers and power capacitors
          1. 15.2.1.1. Principle of chromatographic analysis and results
          2. 15.2.1.2. High performance liquid chromatography (HPLC)
          3. 15.2.1.3. Gel Permeation Chromatography (GPC)
        2. 15.2.2. Energy transport cables and dry capacitors
          1. 15.2.2.1. Microscopy
      3. 15.3. The materials themselves
        1. 15.3.1. Infrared spectrophotometry
        2. 15.3.2. Calorimetric analysis
        3. 15.3.3. Thermostimulated currents
      4. 15.4. Conclusion
      5. 15.5. Bibliography
    7. Chapter 16: Insulating Oils for Transformers
      1. 16.1. Introduction
      2. 16.2. Generalities
      3. 16.3. Mineral oils
        1. 16.3.1. Composition
        2. 16.3.2. Implementation
        3. 16.3.3. Characteristics
      4. 16.4. Synthetic esters or pentaerythritol ester
        1. 16.4.1. Composition and implementation
        2. 16.4.2. Characteristics
        3. 16.4.3. Application
      5. 16.5. Silicone oils or PDMS
        1. 16.5.1. Composition and implementation
        2. 16.5.2. Characteristics
          1. 16.5.2.1. Use
      6. 16.6. Halogenated hydrocarbons or PCB
        1. 16.6.1. Composition and implementation
        2. 16.6.2. Characteristics
        3. 16.6.3. Retro-filling
      7. 16.7. Natural esters or vegetable oils
        1. 16.7.1. Composition and implementation
        2. 16.7.2. Characteristics
        3. 16.7.3. Use
      8. 16.8. Security of employment of insulating oils
        1. 16.8.1. Characteristics related to fire
          1. 16.8.1.1. Flash point, fire point and auto-inflammation
          2. 16.8.1.2. Combustion characteristics
        2. 16.8.2. Toxicology and ecotoxicology
          1. 16.8.2.1. The toxicological properties
          2. 16.8.2.2. The ecotoxicological properties
      9. 16.9. Conclusion and perspectives
      10. 16.10. Bibliography
    8. Chapter 17: Electrorheological Fluids
      1. 17.1. Introduction
        1. 17.1.1. Electrokinetic effects
        2. 17.1.2. Electroviscous effects
        3. 17.1.3. Electrorheological effects
      2. 17.2. Electrorheology
        1. 17.2.1. Electrorheological effect
        2. 17.2.2. Characterization of electrorheological fluids
          1. 17.2.2.1. Rheological characteristics
          2. 17.2.2.2. Electrical characteristics
          3. 17.2.2.3. Energy assessment
        3. 17.2.3. Composition of electrorheological fluids
        4. 17.2.4. Applications of electrorheological fluids
      3. 17.3. Mechanisms and modeling of the electrorheological effect
        1. 17.3.1. Forces exerted on and between the particles
        2. 17.3.2. Mechanisms of the electrorheological effect
          1. 17.3.2.1. Polarization and bringing the particles closer
          2. 17.3.2.2. Formation of chains and conduction current
          3. 17.3.2.3. Flow resistance
      4. 17.4. The conduction model
        1. 17.4.1. The bases of the conduction model
        2. 17.4.2. Attraction force between half-spheres
      5. 17.5. Giant electrorheological effect
      6. 17.6. Conclusion
      7. 17.7. Bibliography
    9. Chapter 18: Electrolytic Capacitors
      1. 18.1. Introduction
      2. 18.2. Generalities
        1. 18.2.1. Characteristic parameters
          1. 18.2.1.1. Presentation
          2. 18.2.1.2. Energy and capacity
          3. 18.2.1.3. Dielectric constant and rigidity
          4. 18.2.1.4. Thickness of the dielectric
          5. 18.2.1.5. Surface of electrodes
        2. 18.2.2. Conclusions on the different families of capacitors
      3. 18.3. Electrolytic capacitors
      4. 18.4. Aluminum liquid electrolytic capacitors
        1. 18.4.1. Principles and composition [PER 03], [ALV 95]
        2. 18.4.2. Assembly and connections [PER 03]
      5. 18.5. (Solid electrolyte) tantalum electrolytic capacitors
        1. 18.5.1. Principle, composition and glimpse of the manufacture [BES 90], [KEM 01], [LAG 96], [PRY 01]
        2. 18.5.2. Assembly and connections
      6. 18.6. Models and characteristics
        1. 18.6.1. Representative electrical diagram
        2. 18.6.2. Loss factors, loss angles
        3. 18.6.3. Variation as a function of the voltage
        4. 18.6.4. Variation as a function of the ambient temperature
          1. 18.6.4.1. Electrolyte liquid aluminum electrolytic capacitors
          2. 18.6.4.2. Solid electrolyte tantalum capacitors
      7. 18.7. Failures of electrolytic capacitors
        1. 18.7.1. Modes and failure rates of components
        2. 18.7.2. Influence of temperature
        3. 18.7.3. Failures of liquid electrolyte aluminum electrolytic capacitors
          1. 18.7.3.1. Ageing of liquid electrolyte aluminum capacitors
          2. 18.7.3.2. Other failures of liquid electrolyte aluminum capacitors
        4. 18.7.4. Failures of solid electrolyte tantalum capacitors
      8. 18.8. Conclusion and perspectives
      9. 18.9. Bibliography
    10. Chapter 19: Ion Exchange Membranes for Low Temperature Fuel Cells
      1. 19.1. Introduction
      2. 19.2. Homogenous cation-exchange membranes
      3. 19.3. Heterogenous ion exchange membranes
      4. 19.4. Polymer/acid membranes
        1. 19.4.1. Membranes prepared from polyme blends
      5. 19.5. Characterization of membranes
        1. 19.5.1. Nernst-Planck flux equation
        2. 19.5.2. Osmotic phenomena and electric potential
        3. 19.5.3. Ionic diffusion in ion exchange membranes
        4. 19.5.4. Electromotive force of concentration cells and transport number
        5. 19.5.5. Conductivity
        6. 19.5.6. Electro-osmosis
        7. 19.5.7. Thermodynamics of irreversible processes and transport numbers
      6. 19.6. Experimental characterization of ion exchange membranes
        1. 19.6.1. Water sorption
        2. 19.6.2. Determination of the ion exchange capacity
        3. 19.6.3. Measurements of transport number and mobility of protons in membranes
          1. 19.6.3.1. Measurement of the mobility of protons
        4. 19.6.4. Measurement of conductivity
        5. 19.6.5. Electro-osmotic measurements
        6. 19.6.6. Measurements of the permeability of reformers in membranes: methanol permeability in vapour phase
      7. 19.7. Determination of membrane morphology using the SEM technique
      8. 19.8. Thermal stability
      9. 19.9. Acknowledgements
      10. 19.10. Bibliography
    11. Chapter 20: Semiconducting Organic Materials for Electroluminescent Devices and Photovoltaic Conversion
      1. 20.1. Brief history
      2. 20.2. Origin of conduction in organic semiconductors
      3. 20.3. Electrical and optical characteristics of organic semiconductors
      4. 20.4. Application to electroluminescent devices
        1. 20.4.1. General structure of an organic electroluminescent diode (OLED)
        2. 20.4.2. Electroluminescence efficiency
        3. 20.4.3. Advancement of the technology
      5. 20.5. Application to photovoltaic conversion
        1. 20.5.1. General structure of an organic photovoltaic cell
        2. 20.5.2. Functioning of an organic photovoltaic cell
        3. 20.5.3. Advancement of the technology
      6. 20.6. The processing of organic semiconductors
        1. 20.6.1. Deposition of polymer solutions
          1. 20.6.1.1. Deposition by spreading
          2. 20.6.1.2. “Inkjet” deposition
        2. 20.6.2. Vapor phase deposition of low molar mass materials
          1. 20.6.2.1. Deposition by thermal evaporation under secondary vacuum
          2. 20.6.2.2. Low-pressure vapor phase deposition
        3. 20.6.3. Laser thermal transfer of organic materials
      7. 20.7. Conclusion
      8. 20.8. Bibliography
    12. Chapter 21: Dielectric Coatings for the Thermal Control of Geostationary Satellites: Trends and Problems
      1. 21.1. Introduction
      2. 21.2. Space environment
        1. 21.2.1. Orbits
        2. 21.2.2. Free space
        3. 21.2.3. Microgravity
        4. 21.2.4. Thermal environment
        5. 21.2.5. Atomic oxygen
        6. 21.2.6. Electromagnetic radiation
        7. 21.2.7. Charged particles [HID 05]
        8. 21.2.8. Meteoroids and cosmic debris
      3. 21.3. The thermal control of space vehicles
        1. 21.3.1. The definition of thermal control
        2. 21.3.2. Usual technologies for thermal control
        3. 21.3.3. Coatings for thermal control
        4. 21.3.4. Multilayer insulations (MLI)
        5. 21.3.5. Radiator coatings
      4. 21.4. Electrostatic phenomena in materials
        1. 21.4.1. Electrical conductivity
          1. 21.4.1.1. The secondary electronic emission
          2. 21.4.1.2. Intrinsic conductivity
          3. 21.4.1.3. Radiation-induced conductivity
        2. 21.4.2. Electrostatic discharges in the geostationary environment
          1. 21.4.2.1. Dielectric discharge
          2. 21.4.2.2. Metal discharge
            1. 21.4.2.2.1. Field emission
            2. 21.4.2.2.2. The peak effect
      5. 21.5. Conclusion
      6. 21.6. Bibliography
    13. Chapter 22: Recycling of Plastic Materials
      1. 22.1. Introduction
      2. 22.2. Plastic materials
        1. 22.2.1. Introduction to plastic materials
        2. 22.2.2. Consumption of plastic materials
        3. 22.2.3. Plastics in electrical engineering
      3. 22.3. Plastic residues
        1. 22.3.1. Generation and recovery of plastic residues
        2. 22.3.2. Processings at the end of life
          1. 22.3.2.1. Mechanical recycling of thermoplastics
          2. 22.3.2.2. Mechanical recycling of thermohardenables
          3. 22.3.2.3. Chemical recycling, or feedstock
            1. 22.3.2.3.1. Chemolysis or chemical depolymerization
            2. 22.3.2.3.2. Thermolysis
          4. 22.3.2.4. Incineration with energy recovery
        3. 22.3.3. Potential and limitations of recycling
      4. 22.4. Bibliography
    14. Chapter 23: Piezoelectric Polymers and their Applications
      1. 23.1. Introduction
      2. 23.2. Piezoelectric polymeric materials
        1. 23.2.1. Poly(vinylidene fluoride)(PVDF)
        2. 23.2.2. The copolymers P(VDF-TrFE)
        3. 23.2.3. The odd-numbered polyamides
        4. 23.2.4. Copolymers constituted of vinylidene cyanide monomer
      3. 23.3. Electro-active properties of piezoelectric polymers
        1. 23.3.1. Ferroelectricity
        2. 23.3.2. Semi-crystalline polymers: Fluorinated polymers and odd polyamides
        3. 23.3.3. Amorphous Poly(vinylidene cyanide) copolymers
        4. 23.3.4. Influence of chemical composition and physical structure on the electro-active properties of polymers
        5. 23.3.5. Protocols of polarization
        6. 23.3.6. Piezoelectricity
        7. 23.3.7. Reduction of the number of independent coefficients – Matrix notation
        8. 23.3.8. Piezoelectric constitutive equations
        9. 23.3.9. Comparison of piezoelectric properties
      4. 23.4. Piezoelectricity applications
        1. 23.4.1. Transmitting transducers
        2. 23.4.2. Piezoelectric sensors
      5. 23.5. Transducers
        1. 23.5.1. Principle
        2. 23.5.2. Electroacoustic transducers
        3. 23.5.3. Characteristics of ultrasonic transducers
        4. 23.5.4. Hydrophones
        5. 23.5.5. Probes for Non-Destructive Testing (NDT)
        6. 23.5.6. Biomedical transducer applications
      6. 23.6. Conclusion
      7. 23.7. Bibliography
    15. Chapter 24: Polymeric Insulators in the Electrical Engineering Industry: Examples of Applications, Constraints and Perspectives
      1. 24.1. Introduction
      2. 24.2. Equipment
        1. 24.2.1. Arc commutation
        2. 24.2.2. Composite insulators
      3. 24.3. Power transformer insulation
      4. 24.4. Perspectives
      5. 24.5. Conclusion
      6. 24.6. Bibliography
  7. List of Authors
  8. Index

Product information

  • Title: Dielectric Materials for Electrical Engineering
  • Author(s): Juan Martinez-Vega
  • Release date: March 2010
  • Publisher(s): Wiley
  • ISBN: 9781848211650