Digital Communications with Emphasis on Data Modems

Book description

This book uses a practical approach in the application of theoretical concepts to digital communications in the design of software defined radio modems.

This book discusses the design, implementation and performance verification of waveforms and algorithms appropriate for digital data modulation and demodulation in modern communication systems. Using a building-block approach, the author provides an introductory to the advanced understanding of acquisition and data detection using source and executable simulation code to validate the communication system performance with respect to theory and design specifications. The author focuses on theoretical analysis, algorithm design, firmware and software designs and subsystem and system testing. This book treats system designs with a variety of channel characteristics from very low to optical frequencies. This book offers system analysis and subsystem implementation options for acquisition and data detection appropriate to the channel conditions and system specifications, and provides test methods for demonstrating system performance. This book also:

  • Outlines fundamental system requirements and related analysis that must be established prior to a detailed subsystem design
  • Includes many examples that highlight various analytical solutions and case studies that characterize various system performance measures
  • Discusses various aspects of atmospheric propagation using the spherical 4/3 effective earth radius model
  • Examines Ionospheric propagation and uses the Rayleigh fading channel to evaluate link performance using several robust waveform modulations
  • Contains end-of-chapter problems, allowing the reader to further engage with the text

Digital Communications with Emphasis on Data Modems is a great resource for communication-system and digital signal processing engineers and students looking for in-depth theory as well as practical implementations.

Table of contents

  1. COVER
  2. TITLE PAGE
  3. PREFACE
    1. REFERENCES
  4. ACKNOWLEDGMENTS
  5. SUMMARY OF NOTATIONS
  6. ABOUT THE COVER
  7. ABOUT THE COMPANION WEBSITE
  8. 1 MATHEMATICAL BACKGROUND AND ANALYSIS TECHNIQUES
    1. 1.1 INTRODUCTION
    2. 1.2 THE FOURIER TRANSFORM AND FOURIER SERIES
    3. 1.3 PULSE DISTORTION WITH IDEAL FILTER MODELS
    4. 1.4 CORRELATION PROCESSING
    5. 1.5 RANDOM VARIABLES AND PROBABILITY
    6. 1.6 RANDOM PROCESSES
    7. 1.7 THE MATCHED FILTER
    8. 1.8 THE LIKELIHOOD AND LOG‐LIKELIHOOD RATIOS
    9. 1.9 PARAMETER ESTIMATION
    10. 1.10 MODEM CONFIGURATIONS AND AUTOMATIC REPEAT REQUEST
    11. 1.11 WINDOWS
    12. 1.12 MATRICES, VECTORS, AND RELATED OPERATIONS
    13. 1.13 OFTEN USED MATHEMATICAL PROCEDURES
    14. 1.14 OFTEN USED MATHEMATICAL RELATIONSHIPS
    15. ACRONYMS
    16. PROBLEMS
    17. REFERENCES
  9. 2 DIGITAL SIGNAL PROCESSING AND MODEM DESIGN CONSIDERATIONS
    1. 2.1 INTRODUCTION
    2. 2.2 DISCRETE AMPLITUDE SAMPLING
    3. 2.3 DISCRETE‐TIME SAMPLING
    4. 2.4 SIGNAL RECONSTRUCTION FOLLOWING DISCRETE‐TIME SAMPLING
    5. 2.5 BASEBAND SAMPLING
    6. 2.6 BANDPASS SAMPLING
    7. 2.7 CORRECTIONS FOR NONIDEAL MODULATORS AND DEMODULATORS
    8. 2.8 MULTIRATE SIGNAL PROCESSING AND INTERPOLATION
    9. APPENDIX 2A AMPLITUDE QUANTIZATION FUNCTION SUBPROGRAM
    10. APPENDIX 2B HILBERT TRANSFORM PARAMETERS
    11. APPENDIX 2C DERIVATION OF PARABOLIC INTERPOLATION ERROR
    12. ACRONYMS
    13. PROBLEMS
    14. REFERENCES
  10. 3 DIGITAL COMMUNICATIONS
    1. 3.1 INTRODUCTION
    2. 3.2 DIGITAL DATA MODULATION AND OPTIMUM DEMODULATION CRITERIA
    3. 3.3 INFORMATION AND CHANNEL CAPACITY
    4. 3.4 BIT‐ERROR PROBABILITY BOUND ON MEMORYLESS CHANNEL
    5. 3.5 PROBABILITY INTEGRAL AND THE ERROR FUNCTION
    6. ACRONYMS
    7. PROBLEMS
    8. REFERENCES
  11. 4 PHASE SHIFT KEYING (PSK) MODULATION, DEMODULATION, AND PERFORMANCE
    1. 4.1 INTRODUCTION
    2. 4.2 CONSTANT ENVELOPE PHASE‐MODULATED WAVEFORMS
    3. 4.3 NON‐CONSTANT ENVELOPE PHASE‐MODULATED WAVEFORMS
    4. 4.4 PHASE‐MODULATED WAVEFORM SPECTRUMS AND PERFORMANCE
    5. ACRONYMS
    6. PROBLEMS
    7. REFERENCES
  12. 5 FREQUENCY SHIFT KEYING (FSK) MODULATION, DEMODULATION, AND PERFORMANCE
    1. 5.1 INTRODUCTION
    2. 5.2 COHERENT DETECTION OF BFSK—KNOWN FREQUENCY AND PHASE
    3. 5.3 NONCOHERENT DETECTION OF BFSK—KNOWN FREQUENCY AND UNKNOWN PHASE
    4. 5.4 CASE STUDIES: COHERENT AND NONCOHERENT BFSK PERFORMANCE SIMULATION
    5. 5.5 NONCOHERENT DETECTION OF BFSK—UNKNOWN FREQUENCY AND PHASE
    6. 5.6 BFSK SPECTRAL DENSITY WITH ARBITRARY MODULATION INDEX
    7. ACRONYMS
    8. PROBLEMS
    9. REFERENCES
  13. 6 AMPLITUDE SHIFT KEYING MODULATION, DEMODULATION, AND PERFORMANCE
    1. 6.1 INTRODUCTION
    2. 6.2 AMPLITUDE SHIFT KEYING (ASK)
    3. 6.3 QUADRATURE AMPLITUDE MODULATION (QAM)
    4. 6.4 ALTERNATE QAM WAVEFORM CONSTELLATIONS
    5. 6.5 CASE STUDY: 16‐ary QAM PERFORMANCE EVALUATION
    6. 6.6 PARTIAL RESPONSE MODULATION
    7. ACRONYMS
    8. PROBLEMS
    9. REFERENCES
  14. 7 M‐ary CODED MODULATION
    1. 7.1 INTRODUCTION
    2. 7.2 COHERENT DETECTION OF ORTHOGONAL CODED WAVEFORMS
    3. 7.3 NONCOHERENT DETECTION OF M‐ary ORTHOGONAL WAVEFORMS
    4. 7.4 COHERENT DETECTION OF M‐ary BIORTHOGONAL WAVEFORMS
    5. ACRONYMS
    6. PROBLEMS
    7. REFERENCES
  15. 8 CODING FOR IMPROVED COMMUNICATIONS
    1. 8.1 INTRODUCTION
    2. 8.2 PULSE CODE MODULATION
    3. 8.3 GRAY CODING
    4. 8.4 DIFFERENTIAL CODING
    5. 8.5 PSEUDO‐RANDOM NOISE SEQUENCES
    6. 8.6 BINARY CYCLIC CODES
    7. 8.7 CYCLIC REDUNDANCY CHECK CODES
    8. 8.8 DATA RANDOMIZING CODES
    9. 8.9 DATA INTERLEAVING
    10. 8.10 WAGNER CODING AND DECODING
    11. 8.11 CONVOLUTIONAL CODES
    12. 8.12 TURBO AND TURBO‐LIKE CODES
    13. 8.13 LDPC CODE AND TPC
    14. 8.14 BOSE‐CHAUDHURI‐HOCQUENGHEM CODES
    15. APPENDIX 8A
    16. APPENDIX 8B
    17. ACRONYMS
    18. PROBLEMS
    19. REFERENCES
  16. 9 FORWARD ERROR CORRECTION CODING WITHOUT BANDWIDTH EXPANSION
    1. 9.1 INTRODUCTION
    2. 9.2 MULTI‐h M‐ary CPM
    3. 9.3 CASE STUDY: 2‐h 4‐ary 1REC CPM
    4. 9.4 MULTIPHASE SHIFT KEYING TRELLIS‐CODED MODULATION
    5. 9.5 CASE STUDY: FOUR‐STATE 8PSK‐TCM PERFORMANCE OVER SATELLITE REPEATER
    6. ACRONYMS
    7. PROBLEMS
    8. REFERENCES
  17. 10 CARRIER ACQUISITION AND TRACKING
    1. 10.1 INTRODUCTION
    2. 10.2 BANDPASS LIMITER
    3. 10.3 BASEBAND PHASELOCK LOOP IMPLEMENTATION
    4. 10.4 PHASE‐ERROR GENERATION
    5. 10.5 FIRST‐ORDER PHASELOCK LOOP
    6. 10.6 SECOND‐ORDER PHASELOCK LOOP
    7. 10.7 THIRD‐ORDER PHASELOCK LOOP
    8. 10.8 OPTIMUM PHASE TRACKING ALGORITHMS
    9. 10.9 SQUARING LOSS EVALUATION
    10. 10.10 CASE STUDY: BPSK AND QPSK PHASELOCK LOOP PERFORMANCE
    11. 10.11 CASE STUDY: BPSK PHASE TRACKING PERFORMANCE OF A DISADVANTAGED TRANSMIT TERMINAL
    12. ACRONYMS
    13. PROBLEMS
    14. REFERENCES
  18. 11 WAVEFORM ACQUISITION
    1. 11.1 INTRODUCTION
    2. 11.2 CW PREAMBLE SEGMENT SIGNAL PROCESSING
    3. 11.3 SYMBOL SYNCHRONIZATION PREAMBLE SEGMENT
    4. 11.4 START‐OF‐MESSAGE (SOM) PREAMBLE SEGMENT
    5. 11.5 SIGNAL‐TO‐NOISE RATIO ESTIMATION
    6. ACRONYMS
    7. PROBLEMS
    8. REFERENCES
  19. 12 ADAPTIVE SYSTEMS
    1. 12.1 INTRODUCTION
    2. 12.2 OPTIMUM FILTERING—WIENER’S SOLUTION
    3. 12.3 FINITE IMPULSE RESPONSE‐ADAPTIVE FILTER ESTIMATION
    4. 12.4 INTERSYMBOL INTERFERENCE AND MULTIPATH EQUALIZATION
    5. 12.5 INTERFERENCE AND NOISE CANCELLATION
    6. 12.6 RECURSIVE LEAST SQUARE (RLS) EQUALIZER
    7. 12.7 CASE STUDY: LMS LINEAR FEEDFORWARD EQUALIZATION
    8. 12.8 CASE STUDY: NARROWBAND INTERFERENCE CANCELLATION
    9. 12.9 CASE STUDY: RECURSIVE LEAST SQUARES PROCESSING
    10. ACRONYMS
    11. PROBLEMS
    12. REFERENCES
  20. 13 SPREAD‐SPECTRUM COMMUNICATIONS
    1. 13.1 INTRODUCTION
    2. 13.2 SPREAD‐SPECTRUM WAVEFORMS AND SPECTRUMS
    3. 13.3 JAMMER AND INTERCEPTOR ENCOUNTERS
    4. 13.4 COMMUNICATION INTERCEPTORS
    5. 13.5 BIT‐ERROR PERFORMANCE OF DSSS WAVEFORMS WITH JAMMING
    6. 13.6 PERFORMANCE OF MFSK WITH PARTIAL‐BAND NOISE JAMMING
    7. 13.7 PERFORMANCE OF DCMPSK WITH PARTIAL‐BAND NOISE JAMMING
    8. 13.8 FHSS WAVEFORMS WITH MULTITONE JAMMING
    9. 13.9 APPROXIMATE PERFORMANCE WITH JAMMER THREATS
    10. 13.10 CASE STUDY: TERRESTRIAL JAMMER ENCOUNTER AND LINK‐STANDOFF RATIO
    11. ACRONYMS
    12. APPENDIX 13A
    13. PROBLEMS
    14. REFERENCES
  21. 14 MODEM TESTING, MODELING, AND SIMULATION
    1. 14.1 INTRODUCTION
    2. 14.2 STATISTICAL SAMPLING
    3. 14.3 COMPUTER GENERATION OF RANDOM VARIABLES
    4. 14.4 BASEBAND WAVEFORM DESCRIPTION
    5. 14.5 SAMPLED WAVEFORM CHARACTERIZATION
    6. 14.6 CASE STUDY: BPSK MONTE CARLO SIMULATION
    7. 14.7 SYSTEM PERFORMANCE EVALUATION USING QUADRATURE INTEGRATION
    8. 14.8 CASE STUDY: BPSK BIT‐ERROR EVALUATION WITH PLL TRACKING
    9. 14.9 CASE STUDY: QPSK BIT‐ERROR EVALUATION WITH PLL TRACKING
    10. ACRONYMS
    11. PROBLEMS
    12. REFERENCES
  22. 15 COMMUNICATION RANGE EQUATION AND LINK ANALYSIS
    1. 15.1 INTRODUCTION
    2. 15.2 RECEIVER AND SYSTEM NOISE FIGURES AND TEMPERATURES
    3. 15.3 ANTENNA GAIN AND PATTERNS
    4. 15.4 RAIN LOSS
    5. 15.5 ELECTRIC FIELD WAVE POLARIZATION
    6. 15.6 PHASE‐NOISE LOSS
    7. 15.7 SCINTILLATION LOSS
    8. 15.8 MULTIPATH LOSS
    9. 15.9 INTERFACE MISMATCH LOSS
    10. 15.10 MISCELLANEOUS SYSTEM LOSSES
    11. 15.11 NONLINEAR POWER AMPLIFIER ANALYSIS AND SIMULATION
    12. 15.12 COMPUTER MODELING OF TWTA AND SSPA NONLINEARITIES
    13. 15.13 ESTABLISHING SIGNAL LEVELS FOR SIMULATION MODELING
    14. 15.14 CASE STUDY: PERFORMANCE SIMULATION OF SRRC‐QPSK WITH SSPA NONLINEARITY
    15. 15.15 LINK BUDGET ANALYSIS
    16. ACRONYMS
    17. PROBLEMS
    18. REFERENCES
  23. 16 SATELLITE ORBITS
    1. 16.1 INTRODUCTION
    2. 16.2 SATELLITE ORBITS
    3. 16.3 EARTH STATIONS
    4. 16.4 PATH LOSS, DOPPLER, AND DOPPLER‐RATE
    5. 16.5 SATELLITE VIEWING
    6. 16.6 SATELLITE ORBIT SELECTION
    7. 16.7 SATELLITE ORBIT POSITION ESTIMATION FROM PARAMETER MEASUREMENTS
    8. 16.8 CASE STUDY: EXAMPLE SATELLITE ENCOUNTERS
    9. ACRONYMS
    10. PROBLEMS
    11. REFERENCES
  24. 17 COMMUNICATIONS THROUGH BANDLIMITED TIME‐INVARIANT LINEAR CHANNELS
    1. 17.1 INTRODUCTION
    2. 17.2 INPHASE AND QUADRATURE CHANNEL RESPONSE
    3. 17.3 INPHASE AND QUADRATURE CHANNEL RESPONSE TO ARBITRARY SIGNAL
    4. 17.4 PULSE MODULATED CARRIER SIGNAL CHARACTERISTICS
    5. 17.5 CHANNEL RESPONSE TO A PULSED MODULATED WAVEFORM
    6. 17.6 EXAMPLE PERFORMANCE SIMULATIONS
    7. 17.7 EXAMPLE OF CHANNEL AMPLITUDE AND PHASE RESPONSES
    8. 17.8 EXAMPLE CHANNEL AMPLITUDE, PHASE, AND DELAY FUNCTIONS
    9. ACRONYMS
    10. PROBLEMS
    11. REFERENCES
  25. 18 COMMUNICATIONS IN FADING ENVIRONMENTS
    1. 18.1 INTRODUCTION
    2. 18.2 RICEAN FADING CHANNELS
    3. 18.3 RICEAN CUMULATIVE DISTRIBUTION
    4. 18.4 APPLICATION OF RICEAN CHANNEL MODEL
    5. 18.5 PERFORMANCE OF SEVERAL BINARY MODULATION WAVEFORMS WITH RICEAN FADING
    6. 18.6 GENERATION OF RICEAN RANDOM VARIABLES
    7. 18.7 RELATIONSHIPS BETWEEN FADING CHANNEL PARAMETERS
    8. 18.8 DIVERSITY TECHNIQUES FOR FADING CHANNELS
    9. ACRONYMS
    10. PROBLEMS
    11. REFERENCES
  26. 19 ATMOSPHERIC PROPAGATION
    1. 19.1 INTRODUCTION
    2. 19.2 COMMUNICATION LINK GEOMETRY FOR CURVED EARTH
    3. 19.3 REFLECTION
    4. 19.4 CASE STUDY: LEO SATELLITE MULTIPATH PROPAGATION
    5. 19.5 REFRACTION
    6. 19.6 DIFFRACTION
    7. 19.7 LONGLEY‐RICE PROPAGATION LOSS MODEL
    8. 19.8 URBAN, SUBURBAN, AND RURAL ENVIRONMENT PROPAGATION LOSS MODELS
    9. 19.9 LAND MOBILE SATELLITE PROPAGATION LOSS MODELS
    10. 19.10 IMPULSIVE NOISE CHANNEL
    11. 19.11 OCEAN WIND WAVE CHANNEL
    12. 19.12 LASER COMMUNICATIONS USING PHOTOMULTIPLIER DETECTOR
    13. ACRONYMS
    14. PROBLEMS
    15. REFERENCES
    16. ADDITIONAL WIRELESS MOBILE COMMUNICATION REFERENCES
  27. 20 IONOSPHERIC PROPAGATION
    1. 20.1 INTRODUCTION
    2. 20.2 ELECTRON DENSITIES: NATURAL ENVIRONMENT
    3. 20.3 ELECTRON DENSITIES: NUCLEAR‐DISTURBED ENVIRONMENT
    4. 20.4 THE REFRACTIVE INDEX AND SIGNAL PROPAGATION
    5. 20.5 SIGNAL PROPAGATION IN SEVERE SCINTILLATION ENVIRONMENT
    6. 20.6 PROPAGATION DISTURBANCES FOLLOWING SEVERE ABSORPTION
    7. 20.7 RAYLEIGH SCINTILLATION CHANNEL MODEL
    8. 20.8 SCINTILLATION MITIGATION TECHNIQUES
    9. 20.9 CASE STUDY: BPSK and DCBPSK PERFORMANCE IN RAYLEIGH FADING CHANNEL
    10. APPENDIX 20A GEOGRAPHIC AND GEOMAGNETIC COORDINATE TRANSFORMATIONS
    11. 20A.1 GEOGRAPHIC‐TO‐GEOMAGNETIC COORDINATE TRANSFORMATION
    12. 20A.2 GEOMAGNETIC‐TO‐GEOGRAPHIC COORDINATE TRANSFORMATION
    13. ACRONYMS
    14. PROBLEMS
    15. REFERENCES
  28. APPENDIX A: CLASSICAL FILTERS AND APPLICATIONS
    1. A.1 INTRODUCTION
    2. A.2 CLASSICAL FILTER POLE LOCATIONS
    3. A.3 COMPUTER SIMULATION RESULTS AND APPLICATIONS
    4. A.4 CASE STUDY: FILTER APPLICATION
    5. PROBLEMS
    6. REFERENCES
  29. APPENDIX B: DIGITAL FILTER DESIGN AND APPLICATIONS
    1. B.1 INTRODUCTION
    2. B.2 DIGITAL FILTER DESIGN USING s‐PLANE POLE–ZERO LOCATIONS
    3. B.3 DIGITAL FILTER DESIGN USING WINDOWS
    4. PROBLEMS
    5. REFERENCES
  30. APPENDIX C: DETECTION OF SIGNALS IN NOISE
    1. C.1 INTRODUCTION
    2. C.2 COHERENT DETECTION
    3. C.3 NONCOHERENT DETECTION
    4. C.4 EVALUATION OF THE DETECTION PROBABILITY AND FALSE‐ALARM THRESHOLD FOR CHI‐SQUARE DISTRIBUTED RANDOM VARIABLES
    5. PROBLEMS
    6. REFERENCES
  31. INDEX
  32. END USER LICENSE AGREEMENT

Product information

  • Title: Digital Communications with Emphasis on Data Modems
  • Author(s): Richard W. Middlestead
  • Release date: April 2017
  • Publisher(s): Wiley
  • ISBN: 9780470408520