O'Reilly logo

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Digital Signal Processing 101, 2nd Edition

Book Description

Digital Signal Processing 101: Everything You Need to Know to Get Started provides a basic tutorial on digital signal processing (DSP). Beginning with discussions of numerical representation and complex numbers and exponentials, it goes on to explain difficult concepts such as sampling, aliasing, imaginary numbers, and frequency response. It does so using easy-to-understand examples with minimum mathematics. In addition, there is an overview of the DSP functions and implementation used in several DSP-intensive fields or applications, from error correction to CDMA mobile communication to airborne radar systems.

This book has been updated to include the latest developments in Digital Signal Processing, and has eight new chapters on:

  • Automotive Radar Signal Processing
  • Space-Time Adaptive Processing Radar
  • Field Orientated Motor Control
  • Matrix Inversion algorithms
  • GPUs for computing
  • Machine Learning
  • Entropy and Predictive Coding
  • Video compression
  • Features eight new chapters on Automotive Radar Signal Processing, Space-Time Adaptive Processing Radar, Field Orientated Motor Control, Matrix Inversion algorithms, GPUs for computing, Machine Learning, Entropy and Predictive Coding, and Video compression
  • Provides clear examples and a non-mathematical approach to get you up to speed quickly
  • Includes an overview of the DSP functions and implementation used in typical DSP-intensive applications, including error correction, CDMA mobile communication, and radar systems

Table of Contents

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright
  5. Acknowledgments
  6. Introduction
  7. Chapter 1. Numerical Representation
    1. 1.1. Integer Fixed Point Representation
    2. 1.2. Fractional Fixed Point Representation
    3. 1.3. Floating Point Representation
  8. Chapter 2. Complex Numbers and Exponentials
    1. 2.1. Complex Addition and Subtraction
    2. 2.2. Complex Multiplication
    3. 2.3. Polar Representation
    4. 2.4. Complex Multiplication Using Polar Representation
    5. 2.5. Complex Conjugate
    6. 2.6. The Complex Exponential
    7. 2.7. Measuring Angles in Radians
  9. Chapter 3. Sampling, Aliasing, and Quantization
    1. 3.1. Sampling Effects
    2. 3.2. Nyquist Sampling Rule
    3. 3.3. Quantization
    4. 3.4. Signal to Noise Ratio
  10. Chapter 4. Frequency Response
    1. 4.1. Frequency Response and the Complex Exponential
    2. 4.2. Normalizing Frequency Response
    3. 4.3. Sweeping Across the Frequency Response
    4. 4.4. Example Frequency Responses
    5. 4.5. Linear Phase Response
    6. 4.6. Normalized Frequency Response Plots
  11. Chapter 5. Finite Impulse Response (FIR) Filters
    1. 5.1. Finite Impulse Response Filter Construction
    2. 5.2. Computing Frequency Response
    3. 5.3. Computing Filter Coefficients
    4. 5.4. Effect of Number of Taps on Filter Response
  12. Chapter 6. Windowing
    1. 6.1. Truncation of Coefficients
    2. 6.2. Tapering of Coefficients
    3. 6.3. Sample Coefficient Windows
  13. Chapter 7. Decimation and Interpolation
    1. 7.1. Decimation
    2. 7.2. Interpolation
    3. 7.3. Resampling by Noninteger Value
  14. Chapter 8. Infinite Impulse Response (IIR) Filters
    1. 8.1. Infinite Impulse Response and Finite Impulse Response Filter Characteristic Comparison
    2. 8.2. Bilinear Transform
    3. 8.3. Frequency Prewarping
  15. Chapter 9. Complex Modulation and Demodulation
    1. 9.1. Modulation Constellations
    2. 9.2. Modulated Signal Bandwidth
    3. 9.3. Pulse-Shaping Filter
    4. 9.4. Raised Cosine Filter
  16. Chapter 10. Discrete and Fast Fourier Transforms (DFT, FFT)
    1. 10.1. Discrete Fourier Transform and Inverse Discrete Fourier Transform Equations
    2. 10.2. First Discrete Fourier Transform Example
    3. 10.3. Second Discrete Fourier Transform Example
    4. 10.4. Third Discrete Fourier Transform Example
    5. 10.5. Fourth Discrete Fourier Transform Example
    6. 10.6. Fast Fourier Transform
    7. 10.7. Filtering Using the Fast Fourier Transform and Inverse Fast Fourier Transform
    8. 10.8. Bit Growth in Fast Fourier Transforms
    9. 10.9. Bit Reversal Addressing
  17. Chapter 11. Digital Upconversion and Downconversion
    1. 11.1. Digital Upconversion
    2. 11.2. Digital Downconversion
    3. 11.3. Intermediate Frequency Subsampling
  18. Chapter 12. Error-Correction Coding
    1. 12.1. Linear Block Encoding
    2. 12.2. Linear Block Decoding
    3. 12.3. Minimum Coding Distance
    4. 12.4. Convolutional Encoding
    5. 12.5. Viterbi Decoding
    6. 12.6. Soft Decision Decoding
    7. 12.7. Cyclic Redundancy Check
    8. 12.8. Shannon Capacity and Limit Theorems
  19. Chapter 13. Matrix Inversion
    1. 13.1. Matrix Basics
    2. 13.2. Cholesky Decomposition
    3. 13.3. 4×4 Cholesky Example
    4. 13.4. QR Decomposition
    5. 13.5. Gram–Schmidt Method
    6. 13.6. QR Decomposition Restructuring for Parallel Implementation
  20. Chapter 14. Field-Oriented Motor Control
    1. 14.1. Magnetism Basics
    2. 14.2. AC Motor Basics
    3. 14.3. DC Motor Basics
    4. 14.4. Electronic Commutation
    5. 14.5. AC Induction Motor
    6. 14.6. Motor Control
    7. 14.7. Park and Clark Transforms
  21. Chapter 15. Analog and Time Division Multiple Access Wireless Communications
    1. 15.1. Early Digital Innovations
    2. 15.2. Frequency Modulation
    3. 15.3. Digital Signal Processor
    4. 15.4. Digital Voice Phone Systems
    5. 15.5. Time Division Multiple Access Modulation and Demodulation
  22. Chapter 16. CDMA Wireless Communications
    1. 16.1. Spread Spectrum Technology
    2. 16.2. Direct Sequence Spread Spectrum
    3. 16.3. Walsh Codes
    4. 16.4. Concept of Code Division Multiple Access
    5. 16.5. Walsh Code Demodulation
    6. 16.6. Network Synchronization
    7. 16.7. RAKE Receiver
    8. 16.8. Pilot Pseudorandom Number Codes
    9. 16.9. Code Division Multiple Access Transmit Architecture
    10. 16.10. Variable Rate Vocoder
    11. 16.11. Soft Handoff
    12. 16.12. Uplink Modulation
    13. 16.13. Power Control
    14. 16.14. Higher Data Rates
    15. 16.15. Spectral Efficiency Considerations
    16. 16.16. Other Code Division Multiple Access Technologies
  23. Chapter 17. Orthogonal Frequency Division Multiple Access Wireless Communications
    1. 17.1. WiMax and Long-Term Evolution
    2. 17.2. Orthogonal Frequency Division Multiple Access Advantages
    3. 17.3. Orthogonality of Periodic Signals
    4. 17.4. Frequency Spectrum of Orthogonal Subcarrier
    5. 17.5. Orthogonal Frequency Division Multiplexing Modulation
    6. 17.6. Intersymbol Interference and the Cyclic Prefix
    7. 17.7. Multiple Input and Multiple Output Equalization
    8. 17.8. Orthogonal Frequency Division Multiple Access System Considerations
    9. 17.9. Orthogonal Frequency Division Multiple Access Spectral Efficiency
    10. 17.10. Orthogonal Frequency Division Multiple Access Doppler Frequency Shift
    11. 17.11. Peak to Average Ratio
    12. 17.12. Crest Factor Reduction
    13. 17.13. Digital Predistortion
    14. 17.14. Remote Radio Head
  24. Chapter 18. Radar Basics
    1. 18.1. Radar Frequency Bands
    2. 18.2. Radar Antennas
    3. 18.3. Radar Range Equation
    4. 18.4. Stealth Aircraft
    5. 18.5. Pulsed Radar Operation
    6. 18.6. Pulse Compression
    7. 18.7. Pulse Repetition Frequency
    8. 18.8. Detection Processing
  25. Chapter 19. Pulse Doppler Radar
    1. 19.1. Doppler Effect
    2. 19.2. Pulsed Frequency Spectrum
    3. 19.3. Doppler Ambiguities
    4. 19.4. Radar Clutter
    5. 19.5. Pulse Repetition Frequency Trade-Offs
    6. 19.6. Target Tracking
  26. Chapter 20. Automotive Radar
    1. 20.1. Frequency-Modulated Continuous-Wave Theory
    2. 20.2. Frequency-Modulated Continuous-Wave Range Detection
    3. 20.3. Frequency-Modulated Continuous-Wave Doppler Detection
    4. 20.4. Frequency-Modulated Continuous-Wave Radar Link Budget
    5. 20.5. Frequency-Modulated Continuous-Wave Implementation Considerations
    6. 20.6. Frequency-Modulated Continuous-Wave Interference
    7. 20.7. Frequency-Modulated Continuous-Wave Beamforming
    8. 20.8. Frequency-Modulated Continuous-Wave Range-Doppler Processing
    9. 20.9. Frequency-Modulated Continuous-Wave Radar Front-End Processing
    10. 20.10. Frequency-Modulated Continuous-Wave Pulse-Doppler Processing
    11. 20.11. Frequency-Modulated Continuous-Wave Radar Back-End Processing
    12. 20.12. Noncoherent Antenna Magnitude Summation
    13. 20.13. Cell Averaging–Constant False Alarm Rate
    14. 20.14. Ordered Sort–Constant False Alarm Rate
    15. 20.15. Angle of Arrival Estimation
  27. Chapter 21. Space Time Adaptive Processing (STAP) Radar
    1. 21.1. Space Time Adaptive Processing Radar Concept
    2. 21.2. Steering Vector
    3. 21.3. Interference Covariance Matrix
    4. 21.4. Space Time Adaptive Processing Optimal Filter
    5. 21.5. Space Time Adaptive Processing Radar Computational Requirements
  28. Chapter 22. Synthetic Array Radar
    1. 22.1. Introduction
    2. 22.2. Synthetic Array Radar Resolution
    3. 22.3. Pulse Compression
    4. 22.4. Azimuth Resolution
    5. 22.5. Synthetic Array Radar Processing
    6. 22.6. Synthetic Array Radar Doppler Processing
    7. 22.7. Synthetic Array Radar Impairments
  29. Chapter 23. Introduction to Video Processing
    1. 23.1. Color Spaces
    2. 23.2. Interlacing
    3. 23.3. Deinterlacing
    4. 23.4. Image Resolution and Bandwidth
    5. 23.5. Chroma Scaling
    6. 23.6. Image Scaling and Cropping
    7. 23.7. Alpha Blending and Compositing
    8. 23.8. Video Compression
    9. 23.9. Digital Video Interfaces
    10. 23.10. Legacy Analog Video Interfaces
  30. Chapter 24. DCT, Entropy, Predictive Coding, and Quantization
    1. 24.1. Discrete Cosine Transform
    2. 24.2. Entropy
    3. 24.3. Huffman Coding
    4. 24.4. Markov Source
    5. 24.5. Predictive Coding
    6. 24.6. Differential Encoding
    7. 24.7. Lossless Compression
    8. 24.8. Quantization
    9. 24.9. Decibels
  31. Chapter 25. Image and Video Compression Fundamentals
    1. 25.1. Baseline JPEG
    2. 25.2. DC Scaling
    3. 25.3. Quantization Tables
    4. 25.4. Entropy Coding
    5. 25.5. JPEG Extensions
    6. 25.6. Video Compression Basics
    7. 25.7. Block Size
    8. 25.8. Motion Estimation
    9. 25.9. Frame Processing Order
    10. 25.10. Compressing I Frames
    11. 25.11. Compressing P Frames
    12. 25.12. Compressing B Frames
    13. 25.13. Rate Control and Buffering
    14. 25.14. Quantization Scale Factor
  32. Chapter 26. Introduction to Machine Learning
    1. 26.1. Convolutional Neural Networks
    2. 26.2. Convolution Layer
    3. 26.3. Rectified Linear Unit Layer
    4. 26.4. Normalization Layer
    5. 26.5. Max-Pooling Layer
    6. 26.6. Fully Connected Layer
    7. 26.7. Training Computational Neural Networks
    8. 26.8. Winograd Transform
    9. 26.9. Convolutional Neural Network Numerical Precision Requirements
  33. Chapter 27. Implementation Using Digital Signal Processors
    1. 27.1. Digital Signal Processing Processor Architectural Enhancements
    2. 27.2. Scalability
    3. 27.3. Floating Point
    4. 27.4. Design Methodology
    5. 27.5. Managing Resources
    6. 27.6. Ecosystem
  34. Chapter 28. Implementation Using FPGAs
    1. 28.1. FPGA Design Methodology
    2. 28.2. DSP Processor or FPGA Choice
    3. 28.3. Design Methodology Considerations
    4. 28.4. Dedicated Digital Signal Processing Circuit Blocks in FPGAs
    5. 28.5. Floating Point Implementation Using FPGAs
    6. 28.6. Ecosystem
    7. 28.7. Future Trends
  35. Chapter 29. Implementation With GPUs
    1. 29.1. Characteristics of Graphics Processing Unit Architecture
    2. 29.2. Graphics Processing Unit Programming Environment
    3. 29.3. Memory Hierarchy
    4. 29.4. Interfaces
    5. 29.5. Numerical Precision
    6. 29.6. Future Trends
  36. Appendix A. Q Format Shift With Fractional Multiplication
  37. Appendix B. Evaluation of Finite Impulse Response Design Error Minimization
  38. Appendix C. Laplace Transform
  39. Appendix D. Z-Transform
  40. Appendix E. Binary Field Arithmetic
  41. Index