Skip to Content
Distributed Computing with Python
book

Distributed Computing with Python

by Francesco Pierfederici
April 2016
Intermediate to advanced
170 pages
3h 48m
English
Packt Publishing
Content preview from Distributed Computing with Python

Amdahl's law

The last important concept of this chapter is a behavior known as Amdahl's law. In simple terms, Amdahl's law states that we can parallelize/distribute our computations as much as we want, gaining in performance as we add compute resources. However, our code cannot be faster than the speed of its combined sequential (that is, non parallelizable) parts on a single processor.

Put more formally, Amdahl's law has the following formulation. Given an algorithm that is partially parallel, let's call P its parallel fraction and S its serial (that is, non parallel) fraction (clearly, S+P=100%). Furthermore, let's call T(n) the runtime (in seconds) of the algorithm when using n processors. Then, the following relation holds:

The preceding relation, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Distributed Machine Learning with Python

Distributed Machine Learning with Python

Guanhua Wang
Scientific Computing with Python - Second Edition

Scientific Computing with Python - Second Edition

Claus Führer, Claus Fuhrer, Jan Erik Solem, Olivier Verdier
Learning Python Networking - Second Edition

Learning Python Networking - Second Edition

José Manuel Ortega, Dr. M. O. Faruque Sarker, Sam Washington

Publisher Resources

ISBN: 9781785889691Supplemental Content