Assumptions: (1) Response variables are fully observed, with ( y i , y i ) |( x i , x i )( i=1,2,...,n ) independent mutual conditions. The conditional density function is then p( ( y i , y i )|( x i , x i ) )=a( ( y i , y i )| ( σ , σ ) 2 ) exp{ 1 2 ( σ , σ ) 2 d i ( y i , y i );( μ i , μ t ) }( i=1,2,...,n );

(2) The vector ( x i , x i ), which is composed of k explanatory variables, is a discrete random vector whose distribution density function is p( ( x i , x i )|( γ , γ ) ),( γ , γ ) =( ( γ 1 , γ 1 ),( γ 2 , γ 2 ),...,(

Get Dynamic Fuzzy Machine Learning now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.