O'Reilly logo

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Electric Power Generation, Transmission, and Distribution, 3rd Edition

Book Description

Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies.

Topics covered include:

  • Electric power generation: nonconventional methods
  • Electric power generation: conventional methods
  • Transmission system
  • Distribution systems
  • Electric power utilization
  • Power quality

L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Saifur Rahman, Rama Ramakumar, George Karady, Bill Kersting, Andrew Hanson, and Mark Halpin present substantially new and revised material, giving readers up-to-date information on core areas. These include advanced energy technologies, distributed utilities, load characterization and modeling, and power quality issues such as power system harmonics, voltage sags, and power quality monitoring.

With six new and 16 fully revised chapters, the book supplies a high level of detail and, more importantly, a tutorial style of writing and use of photographs and graphics to help the reader understand the material.

New chapters cover:

  • Water
  • Transmission Line Reliability Methods
  • High Voltage Direct Current Transmission System
  • Advanced Technology High-Temperature Conduction
  • Distribution Short-Circuit Protection
  • Linear Electric Motors

A volume in the Electric Power Engineering Handbook, Third Edition.

Other volumes in the set:

  • K12648 Power Systems, Third Edition (ISBN: 9781439856338)
  • K13917 Power System Stability and Control, Third Edition (ISBN: 9781439883204)
  • K12650 Electric Power Substations Engineering, Third Edition (ISBN: 9781439856383)
  • K12643 Electric Power Transformer Engineering, Third Edition (ISBN: 9781439856291)

Table of Contents

  1. Preface
  2. Editor
  3. Contributors
  4. Section I - Electric Power Generation: Nonconventional Methods
    1. Chapter 1 - Wind Power
      1. 1.1 Wind Resource
        1. 1.1.1 Wind Shear
        2. 1.1.2 Wind Maps
        3. 1.1.3 Wind Turbines
      2. 1.2 Wind Farms
        1. 1.2.1 Small Wind Turbines
        2. 1.2.2 Village Power
        3. 1.2.3 Wind Diesel
        4. 1.2.4 Other
        5. 1.2.5 Performance
      3. 1.3 Institutional Issues
      4. 1.4 Economics
      5. 1.5 Summary
      6. References
    2. Section 2 - Photovoltaic Fundamentals
      1. 2.1 Introduction
      2. 2.2 Market Drivers
      3. 2.3 Optical Absorption
        1. 2.3.1 Introduction
        2. 2.3.2 Semiconductor Materials
        3. 2.3.3 Generation of EHP by Photon Absorption
      4. 2.4 Extrinsic Semiconductors and the pn Junction
        1. 2.4.1 Extrinsic Semiconductors
        2. 2.4.2 pn Junction
          1. 2.4.2.1 Junction Formation and Built-In Potential
          2. 2.4.2.2 Illuminated pn Junction
      5. 2.5 Maximizing Cell Performance
        1. 2.5.1 Externally Biased pn Junction
        2. 2.5.2 Parameter Optimization
          1. 2.5.2.1 Introduction
          2. 2.5.2.2 Minimizing the Reverse Saturation Current
          3. 2.5.2.3 Optimizing Photocurrent
        3. 2.5.3 Minimizing Cell Resistance Losses
      6. 2.6 Traditional PV Cells
        1. 2.6.1 Introduction
        2. 2.6.2 Crystalline Silicon Cells
        3. 2.6.3 Amorphous Silicon Cells
        4. 2.6.4 Copper Indium Gallium Diselenide Cells
        5. 2.6.5 Cadmium Telluride Cells
        6. 2.6.6 Gallium Arsenide Cells
      7. 2.7 Emerging Technologies
        1. 2.7.1 New Developments in Silicon Technology
        2. 2.7.2 CIS-Family-Based Absorbers
        3. 2.7.3 Other III–V and II–VI Emerging Technologies
        4. 2.7.4 Other Technologies
          1. 2.7.4.1 Thermophotovoltaic Cells
          2. 2.7.4.2 Intermediate Band Solar Cells
          3. 2.7.4.3 Super Tandem Cells
          4. 2.7.4.4 Hot Carrier Cells
          5. 2.7.4.5 Optical Up- and Down-Conversion
          6. 2.7.4.6 Organic PV Cells
      8. 2.8 PV Electronics and Systems
        1. 2.8.1 Introduction
        2. 2.8.2 PV System Electronic Components
          1. 2.8.2.1 Inverters
          2. 2.8.2.2 Charge Controllers
      9. 2.9 Conclusions
      10. References
    3. Section 3 - Advanced Energy Technologies
      1. 3.1 Storage Systems
        1. 3.1.1 Flywheel Storage
        2. 3.1.2 Compressed Air Energy Storage
        3. 3.1.3 Superconducting Magnetic Energy Storage
        4. 3.1.4 Battery Storage
          1. 3.1.4.1 Battery Types
          2. 3.1.4.2 Lead–Acid Batteries
          3. 3.1.4.3 Nickel Iron and Nickel Cadmium Batteries
          4. 3.1.4.4 Nickel Metal Hydride Batteries
          5. 3.1.4.5 Sodium-Sulfur Batteries
          6. 3.1.4.6 Lithium Ion and Lithium Polymer Batteries
          7. 3.1.4.7 Zinc and Aluminum Air Batteries
      2. 3.2 Fuel Cells
        1. 3.2.1 Basic Principles
        2. 3.2.2 Types of Fuel Cells
        3. 3.2.3 Fuel Cell Operation
          1. 3.2.3.1 Polymer Electrolyte Membrane
          2. 3.2.3.2 Phosphoric Acid Fuel Cell
          3. 3.2.3.3 Molten Carbonate Fuel Cell
          4. 3.2.3.4 Solid Oxide Fuel Cell
      3. 3.3 Summary
    4. Chapter 4 - Water
      1. 4.1 Introduction
      2. 4.2 World Resource
      3. 4.3 Hydroelectric
        1. 4.3.1 Large (≥30 MW)
        2. 4.3.2 Small Hydro (100 kW to 30 MW, 10 MW in Europe)
        3. 4.3.3 Microhydro (<100 kW)
      4. 4.4 Turbines
        1. 4.4.1 Impulse Turbines
        2. 4.4.2 Reaction Turbines
      5. 4.5 Water Flow
      6. 4.6 Tides
      7. 4.7 Ocean
        1. 4.7.1 Currents
        2. 4.7.2 Waves
        3. 4.7.3 Ocean Thermal Energy Conversion
        4. 4.7.4 Salinity Gradient
      8. 4.8 Other
      9. References
      10. Recommended Resources
  5. Section II - Electric Power Generation: Conventional Methods
    1. Chapter 5 - Hydroelectric Power Generation
      1. 5.1 Planning of Hydroelectric Facilities
        1. 5.1.1 Siting
        2. 5.1.2 Hydroelectric Plant Schemes
        3. 5.1.3 Selection of Plant Capacity, Energy, and Other Design Features
      2. 5.2 Hydroelectric Plant Features
        1. 5.2.1 Turbine
        2. 5.2.2 Flow Control Equipment
        3. 5.2.3 Generator
        4. 5.2.4 Generator Terminal Equipment
        5. 5.2.5 Generator Switchgear
        6. 5.2.6 Generator Step-Up Transformer
        7. 5.2.7 Excitation System
        8. 5.2.8 Governor System
        9. 5.2.9 Control Systems
        10. 5.2.10 Protection Systems
        11. 5.2.11 Plant Auxiliary Equipment
      3. 5.3 Special Considerations Affecting Pumped Storage Plants
        1. 5.3.1 Pump Motor Starting
        2. 5.3.2 Phase Reversing of the Generator/Motor
        3. 5.3.3 Draft Tube Water Depression
      4. 5.4 Construction and Commissioning of Hydroelectric Plants
      5. References
    2. Chapter 6 - Synchronous Machinery
      1. 6.1 General
      2. 6.2 Construction (see Figure 6.1)
        1. 6.2.1 Stator
          1. 6.2.1.1 Frame
          2. 6.2.1.2 Stator Core Assembly
        2. 6.2.2 Rotor
          1. 6.2.2.1 The Rotor Assembly
          2. 6.2.2.2 Bearings and Couplings
      3. 6.3 Performance
        1. 6.3.1 Synchronous Machines, in General
        2. 6.3.2 Synchronous Generator Capability
        3. 6.3.3 Synchronous Motor and Condenser Starting
      4. Reference
    3. Chapter 7 - Thermal Generating Plants
      1. 7.1 Plant Auxiliary System
        1. 7.1.1 Selection of Auxiliary System Voltages
        2. 7.1.2 Auxiliary System Loads
        3. 7.1.3 Auxiliary System Power Sources
        4. 7.1.4 Auxiliary System Voltage Regulation Requirements
      2. 7.2 Plant One-Line Diagram
      3. 7.3 Plant Equipment Voltage Ratings
      4. 7.4 Grounded vs. Ungrounded Systems
        1. 7.4.1 Ungrounded
        2. 7.4.2 Grounded
        3. 7.4.3 Low-Resistance Grounding
        4. 7.4.4 High-Resistance Grounding
      5. 7.5 Miscellaneous Circuits
        1. 7.5.1 Essential Services
        2. 7.5.2 Lighting Supply
      6. 7.6 DC Systems
        1. 7.6.1 125 V DC
        2. 7.6.2 250 V DC
      7. 7.7 Power Plant Switchgear
        1. 7.7.1 High-Voltage Circuit Breakers
        2. 7.7.2 Medium-Voltage Switchgear
          1. 7.7.2.1 Medium-Voltage Air Circuit Breakers
          2. 7.7.2.2 Medium-Voltage Vacuum Circuit Breakers
          3. 7.7.2.3 Medium-Voltage SF6 Circuit Breakers
        3. 7.7.3 Low-Voltage Switchgear
          1. 7.7.3.1 Low-Voltage Air Circuit Breakers
        4. 7.7.4 Motor Control Centers
        5. 7.7.5 Circuit Interruption
      8. 7.8 Auxiliary Transformers
        1. 7.8.1 Selection of Percent Impedance
        2. 7.8.2 Rating of Voltage Taps
      9. 7.9 Motors
        1. 7.9.1 Selection of Motors
        2. 7.9.2 Types of Motors
          1. 7.9.2.1 Squirrel Cage Induction Motors
          2. 7.9.2.2 Wound Rotor Induction Motors
          3. 7.9.2.3 Synchronous Motors
          4. 7.9.2.4 Direct Current Motors
          5. 7.9.2.5 Single-Phase Motors
          6. 7.9.2.6 Motor Starting Limitations
      10. 7.10 Main Generator
        1. 7.10.1 Associated Equipment
          1. 7.10.1.1 Exciters and Excitation Equipment
        2. 7.10.2 Electronic Exciters
        3. 7.10.3 Generator Neutral Grounding
        4. 7.10.4 Isolated Phase Bus
      11. 7.11 Cable
      12. 7.12 Electrical Analysis
        1. 7.12.1 Load Flow
        2. 7.12.2 Short-Circuit Analysis
        3. 7.12.3 Surge Protection
        4. 7.12.4 Phasing
        5. 7.12.5 Relay Coordination Studies
      13. 7.13 Maintenance and Testing
      14. 7.14 Start-Up
      15. References
    4. Chapter 8 - Distributed Utilities
      1. 8.1 Available Technologies
      2. 8.2 Fuel Cells
      3. 8.3 Microturbines
      4. 8.4 Combustion Turbines
      5. 8.5 Photovoltaics
      6. 8.6 Solar-Thermal-Electric Systems
      7. 8.7 Wind Electric Conversion Systems
      8. 8.8 Storage Technologies
      9. 8.9 Interface Issues
        1. 8.9.1 Line-Commutated Inverters
        2. 8.9.2 Self-Commutated Inverters
      10. 8.10 Applications
        1. 8.10.1 Ancillary Services
        2. 8.10.2 “Traditional Utility” Applications
        3. 8.10.3 Customer Applications
        4. 8.10.4 Third-Party Service Providers
      11. 8.11 Conclusions
      12. References
  6. Section III - Transmission System
    1. Chapter 9 - Concept of Energy Transmission and Distribution
      1. 9.1 Generation Stations
      2. 9.2 Switchgear
      3. 9.3 Control Devices
      4. 9.4 Concept of Energy Transmission and Distribution
        1. 9.4.1 High-Voltage Transmission Lines
        2. 9.4.2 High-Voltage DC Lines
        3. 9.4.3 Subtransmission Lines
        4. 9.4.4 Distribution Lines
      5. References
    2. Chapter 10 - Transmission Line Structures
      1. 10.1 Traditional Line Design Practice
        1. 10.1.1 Structure Types in Use
        2. 10.1.2 Factors Affecting Structure Type Selection
      2. 10.2 Current Deterministic Design Practice
        1. 10.2.1 Reliability Level
        2. 10.2.2 Security Level
      3. 10.3 Improved Design Approaches
      4. 10.A Appendix A: General Design Criteria—Methodology
      5. References
    3. Chapter 11 - Insulators and Accessories
      1. 11.1 Electrical Stresses on External Insulation
        1. 11.1.1 Transmission Lines and Substations
        2. 11.1.2 Electrical Stresses
          1. 11.1.2.1 Continuous Power Frequency Voltages
          2. 11.1.2.2 Temporary Overvoltages
          3. 11.1.2.3 Switching Overvoltages
          4. 11.1.2.4 Lightning Overvoltages
        3. 11.1.3 Environmental Stresses
          1. 11.1.3.1 Temperature
          2. 11.1.3.2 UV Radiation
          3. 11.1.3.3 Rain
          4. 11.1.3.4 Icing
          5. 11.1.3.5 Pollution
          6. 11.1.3.6 Altitude
        4. 11.1.4 Mechanical Stresses
      2. 11.2 Ceramic (Porcelain and Glass) Insulators
        1. 11.2.1 Materials
        2. 11.2.2 Insulator Strings
        3. 11.2.3 Post-Type Insulators
        4. 11.2.4 Long Rod Insulators
      3. 11.3 Nonceramic (Composite) Insulators
        1. 11.3.1 Composite Suspension Insulators
          1. 11.3.1.1 End Fittings
          2. 11.3.1.2 Corona Ring(s)
          3. 11.3.1.3 Fiberglass-Reinforced Plastic Rod
          4. 11.3.1.4 Interfaces between Shed and Fiberglass Rod
          5. 11.3.1.5 Weather Shed
        2. 11.3.2 Composite Post Insulators
      4. 11.4 Insulator Failure Mechanism
        1. 11.4.1 Porcelain Insulators
        2. 11.4.2 Insulator Pollution
          1. 11.4.2.1 Ceramic Insulators
          2. 11.4.2.2 Nonceramic Insulators
        3. 11.4.3 Effects of Pollution
        4. 11.4.4 Composite Insulators
        5. 11.4.5 Aging of Composite Insulators
      5. 11.5 Methods for Improving Insulator Performance
      6. 11.6 Accessories
      7. References
    4. Chapter 12 - Transmission Line Construction and Maintenance
      1. 12.1 Introduction
      2. 12.2 Transmission Line Siting
      3. 12.3 Sequence of Line Construction
      4. 12.4 Conductor Pulling Plan
      5. 12.5 Conductor Stringing Methods
        1. 12.5.1 Slack or Layout Method
        2. 12.5.2 Tension Stringing
      6. 12.6 Equipment Setup
      7. 12.7 Sagging
      8. 12.8 Overhead Transmission Line Maintenance
        1. 12.8.1 Introduction
        2. 12.8.2 Overhead Transmission Line Inspections
        3. 12.8.3 Transmission Line Inspection Software
        4. 12.8.4 Transmission Line Fault Investigations and Corrective Action(s)
      9. 12.9 Transmission Line Work
        1. 12.9.1 Live Line Work
        2. 12.9.2 Worksite Grounding
        3. 12.9.3 Vegetation Management
      10. 12.10 Data/Information Management and Analysis
      11. 12.11 Emergency Restoration of Transmission Structures
      12. References
    5. Chapter 13 - Insulated Power Cables Used in Underground Applications
      1. 13.1 Underground System Designs
      2. 13.2 Conductor
      3. 13.3 Insulation
      4. 13.4 Medium- and High-Voltage Power Cables
      5. 13.5 Shield Bonding Practice
      6. 13.6 Installation Practice
      7. 13.7 System Protection Devices
      8. 13.8 Common Calculations Used with Cable
      9. References
    6. Chapter 14 - Transmission Line Parameters
      1. 14.1 Transmission Line Parameters
        1. 14.1.1 Series Resistance
          1. 14.1.1.1 Frequency Effect
          2. 14.1.1.2 Temperature Effect
          3. 14.1.1.3 Spiraling and Bundle Conductor Effect
          4. 14.1.1.4 Current-Carrying Capacity (Ampacity)
        2. 14.1.2 Series Inductance and Series Inductive Reactance
          1. 14.1.2.1 Inductance of a Solid, Round, Infinitely Long Conductor
          2. 14.1.2.2 Internal Inductance due to Internal Magnetic Flux
          3. 14.1.2.3 External Inductance
          4. 14.1.2.4 Inductance of a Two-Wire, Single-Phase Line
          5. 14.1.2.5 Inductance of Three-Phase Transmission Line in Asymmetrical Arrangement
          6. 14.1.2.6 Inductance of Balanced Three-Phase Transmission Line in Symmetrical Arrangement
          7. 14.1.2.7 Inductance of Transposed Three-Phase Transmission Lines
        3. 14.1.3 Shunt Capacitance and Capacitive Reactance
          1. 14.1.3.1 Capacitance of a Single Solid Conductor
          2. 14.1.3.2 Capacitance of a Single-Phase Line with Two Wires
          3. 14.1.3.3 Capacitance of Three-Phase Transmission Line in Asymmetrical Arrangement
          4. 14.1.3.4 Capacitance of Three-Phase Transmission Line in Symmetrical Arrangement
          5. 14.1.3.5 Capacitance of Stranded Bundle Conductors
          6. 14.1.3.6 Capacitance due to Earth’s Surface
        4. 14.1.4 Equivalent Circuit of Three-Phase Transmission Lines
        5. 14.1.5 Characteristics of Overhead Conductors
      2. References
    7. Chapter 15 - Sag and Tension of Conductor
      1. 15.1 Catenary Cables
        1. 15.1.1 Level Spans
        2. 15.1.2 Conductor Length
        3. 15.1.3 Conductor Slack
        4. 15.1.4 Inclined Spans
        5. 15.1.5 Ice and Wind Conductor Loads
          1. 15.1.5.1 Ice Loading
          2. 15.1.5.2 Wind Loading
          3. 15.1.5.3 Combined Ice and Wind Loading
        6. 15.1.6 Conductor Tension Limits
      2. 15.2 Approximate Sag-Tension Calculations
        1. 15.2.1 Sag Change with Thermal Elongation
      3. 15.3 Numerical Sag-Tension Calculations
        1. 15.3.1 Stress–Strain Curves
          1. 15.3.1.1 Permanent Elongation
          2. 15.3.1.2 Permanent Elongation due to Heavy Loading
          3. 15.3.1.3 Permanent Elongation at Everyday Tensions (Creep Elongation)
        2. 15.3.2 Sag-Tension Tables
          1. 15.3.2.1 Initial vs. Final Sags and Tensions
          2. 15.3.2.2 Special Aspects of ACSR Sag-Tension Calculations
      4. 15.4 Ruling Span Concept
        1. 15.4.1 Tension Differences for Adjacent Dead-End Spans
        2. 15.4.2 Tension Equalization by Suspension Insulators
        3. 15.4.3 Ruling Span Calculation
        4. 15.4.4 Stringing Sag Tables
      5. 15.5 Line Design Sag-Tension Parameters
        1. 15.5.1 Catenary Constants
        2. 15.5.2 Wind Span
        3. 15.5.3 Weight Span
        4. 15.5.4 Uplift at Suspension Structures
        5. 15.5.5 Tower Spotting
      6. 15.6 Conductor Installation
        1. 15.6.1 Conductor Stringing Methods
          1. 15.6.1.1 Slack or Layout Stringing Method
          2. 15.6.1.2 Tension Stringing
        2. 15.6.2 Tension Stringing Equipment and Setup
        3. 15.6.3 Sagging Procedure
          1. 15.6.3.1 Creep Elongation during Stringing
          2. 15.6.3.2 Prestressing Conductor
          3. 15.6.3.3 Sagging by Stopwatch Method
          4. 15.6.3.4 Sagging by Transit Methods
          5. 15.6.3.5 Sagging Accuracy
          6. 15.6.3.6 Clipping Offsets
      7. 15.7 Defining Terms
      8. References
    8. Chapter 16 - Corona and Noise
      1. 16.1 Corona Modes (Trinh and Jordan, 1968; Trinh, 1995a)
        1. 16.1.1 Negative Corona Modes
          1. 16.1.1.1 Trichel Streamer
          2. 16.1.1.2 Negative Pulseless Glow
          3. 16.1.1.3 Negative Streamer
        2. 16.1.2 Positive Corona Modes
          1. 16.1.2.1 Burst Corona
          2. 16.1.2.2 Onset Streamer
          3. 16.1.2.3 Positive Glow
          4. 16.1.2.4 Breakdown Streamer
        3. 16.1.3 AC Corona
      2. 16.2 Main Effects of Corona Discharges on Overhead Lines (Trinh, 1995b)
        1. 16.2.1 Corona Losses
        2. 16.2.2 Electromagnetic Interference
          1. 16.2.2.1 Television Interference
        3. 16.2.3 Audible Noise
        4. 16.2.4 Example of Calculation
      3. 16.3 Impact on the Selection of Line Conductors
        1. 16.3.1 Corona Performance of HV Lines
        2. 16.3.2 Approach to Control the Corona Performance
        3. 16.3.3 Selection of Line Conductors
          1. 16.3.3.1 Worst-Case Performance
          2. 16.3.3.2 Long-Term Corona Performance
      4. 16.4 Conclusions
      5. References
    9. Chapter 17 - Geomagnetic Disturbances and Impacts upon Power System Operation
      1. 17.1 Introduction
      2. 17.2 Power Grid Damage and Restoration Concerns
      3. 17.3 Weak Link in the Grid: Transformers
      4. 17.4 Overview of Power System Reliability and Related Space Weather Climatology
      5. 17.5 Geological Risk Factors and Geo-Electric Field Response
      6. 17.6 Power Grid Design and Network Topology Risk Factors
      7. 17.7 Extreme Geomagnetic Disturbance Events: Observational Evidence
      8. 17.8 Power Grid Simulations for Extreme Disturbance Events
      9. 17.9 Conclusions
      10. References
    10. Chapter 18 - Lightning Protection
      1. 18.1 Ground Flash Density
      2. 18.2 Mitigation Methods
      3. 18.3 Stroke Incidence to Power Lines
      4. 18.4 Stroke Current Parameters
      5. 18.5 Calculation of Lightning Overvoltage on Grounded Object
      6. 18.6 Calculation of Resistive Voltage Rise VR
      7. 18.7 Calculation of Inductive Voltage Rise VL
      8. 18.8 Calculation of Voltage Rise on Phase Conductor
      9. 18.9 Joint Distribution of Peak Voltage on Insulators
      10. 18.10 Insulation Strength
      11. 18.11 Calculation of Transmission Line Outage Rate
      12. 18.12 Improving the Transmission Line Lightning Outage Rate
        1. 18.12.1 Increasing the Insulator Dry Arc Distance
        2. 18.12.2 Modifying the Distribution of Footing Resistance
        3. 18.12.3 Increasing the Effective Number of Groundwires Using UBGW
        4. 18.12.4 Increasing the Effective Number of Groundwires Using Line Surge Arresters
      13. 18.13 Conclusion
      14. References
    11. Chapter 19 - Reactive Power Compensation
      1. 19.1 Need for Reactive Power Compensation
        1. 19.1.1 Shunt Reactive Power Compensation
        2. 19.1.2 Shunt Capacitors
      2. 19.2 Application of Shunt Capacitor Banks in Distribution Systems: A Utility Perspective
      3. 19.3 Static VAR Control
        1. 19.3.1 Description of SVC
        2. 19.3.2 How Does SVC Work?
      4. 19.4 Series Compensation
      5. 19.5 Series Capacitor Bank
        1. 19.5.1 Description of Main Components
          1. 19.5.1.1 Capacitors
          2. 19.5.1.2 Metal Oxide Varistor
          3. 19.5.1.3 Triggered Air Gap
          4. 19.5.1.4 Damping Reactor
          5. 19.5.1.5 Bypass Breaker
          6. 19.5.1.6 Relay and Protection System
        2. 19.5.2 Subsynchronous Resonance
        3. 19.5.3 Adjustable Series Compensation
        4. 19.5.4 Thyristor-Controlled Series Compensation
      6. 19.6 Voltage Source Converter–Based Topologies
        1. 19.6.1 Basic Structure of a Synchronous Voltage Source
        2. 19.6.2 Operation of Synchronous Voltage Sources
        3. 19.6.3 Static Compensator
        4. 19.6.4 Static Series Synchronous Compensator
        5. 19.6.5 Unified Power Flow Controller
      7. 19.7 Defining Terms
      8. References
    12. Chapter 20 - Environmental Impact of Transmission Lines
      1. 20.1 Introduction
      2. 20.2 Aesthetic Effects of Lines
      3. 20.3 Magnetic Field Generated by HV Lines
        1. 20.3.1 Magnetic Field Calculation
        2. 20.3.2 Health Effect of Magnetic Field
          1. 20.3.2.1 Epidemiological Studies
          2. 20.3.2.2 Laboratory Studies
          3. 20.3.2.3 Exposure Assessment Studies
          4. 20.3.2.4 Summary
      4. 20.4 Electrical Field Generated by HV Lines
        1. 20.4.1 Electric Charge Calculation
        2. 20.4.2 Electric Field Calculation
        3. 20.4.3 Environmental Effect of Electric Field
      5. 20.5 Audible Noise
      6. 20.6 Electromagnetic Interference
      7. References
    13. Chapter 21 - Transmission Line Reliability Methods
      1. 21.1 Introduction
      2. 21.2 Common Terminology for Analyzing Transmission Outage Data
      3. 21.3 Transmission Outage Data Sources and Current Data Gathering Efforts
      4. 21.4 Western Electricity Coordinating Council: Transmission Reliability Database
      5. 21.5 North American Electricity Reliability Corporation: Transmission Availability Database System
        1. 21.5.1 Data in Annual Reports
      6. 21.6 Salt River Project Transmission Outage Data
        1. 21.6.1 SRP Operating Environment
        2. 21.6.2 Transmission Event Data Capture
        3. 21.6.3 Transmission Event Data Characteristics
        4. 21.6.4 Nonrandom Event Performance Analysis of Actionable Transmission System Events
        5. 21.6.5 Potential Uses of the Nonrandom Event Performance, NREP, Feedback
        6. 21.6.6 Category Random
        7. 21.6.7 Category Nonrandom
        8. 21.6.8 NREP Conclusion Section
      7. 21.7 Southern California Edison Transmission Outage Data
      8. 21.8 Conclusion
      9. References
    14. Chapter 22 - High-Voltage Direct Current Transmission System
      1. 22.1 Introduction
      2. 22.2 Current Source Converter–Based Classical HVDC System
        1. 22.2.1 Description of Classical HVDC
        2. 22.2.2 Operation of the HVDC System
      3. 22.3 HVDC with Voltage Source Converters
        1. 22.3.1 Description of HVDC with Voltage Source Converter
        2. 22.3.2 PWM Technology
      4. References
    15. Chapter 23 - Transmission Line Structures
      1. 23.1 Transmission Line Design Practice
        1. 23.1.1 Transmission Line Support Structures
        2. 23.1.2 Transmission Line Foundations
        3. 23.1.3 Factors Influencing Structure and Foundation Selection
      2. 23.2 Current Design Practices
        1. 23.2.1 Deterministic Design Approach
        2. 23.2.2 Reliability-Based Design Approach
        3. 23.2.3 Security Level
      3. 23.3 Foundation Design
        1. 23.3.1 Subsurface Investigation
        2. 23.3.2 Foundation Geotechnical Design Parameters
        3. 23.3.3 Foundation Design Models
        4. 23.3.4 Foundation Reliability-Based Design
      4. References
    16. Chapter 24 - Advanced Technology High-Temperature Conductors
      1. 24.1 Introduction
      2. 24.2 General Considerations
      3. 24.3 Aluminum Conductor Composite Core
      4. 24.4 Aluminum Conductor Composite Reinforced
      5. 24.5 Gap-Type ACSR Conductor
      6. 24.6 INVAR-Supported Conductor
      7. 24.7 Testing: The Sequential Mechanical Test
      8. 24.8 Conclusion
      9. References
  7. Section IV - Distribution Systems
    1. Chapter 25 - Power System Loads
      1. 25.1 Load Classification
      2. 25.2 Modeling Applications
      3. 25.3 Load Modeling Concepts and Approaches
      4. 25.4 Load Characteristics and Models
      5. 25.5 Static Load Characteristics
        1. 25.5.1 Exponential Models
        2. 25.5.2 Polynomial Models
        3. 25.5.3 Combined Exponential and Polynomial Models
        4. 25.5.4 Comparison of Exponential and Polynomial Models
        5. 25.5.5 Devices Contributing to Modeling Difficulties
      6. 25.6 Load Window Modeling
      7. References
    2. Chapter 26 - Distribution System Modeling and Analysis
      1. 26.1 Modeling
        1. 26.1.1 Line Impedance
          1. 26.1.1.1 Carson’s Equations
          2. 26.1.1.2 Modified Carson’s Equations
          3. 26.1.1.3 Overhead and Underground Lines
          4. 26.1.1.4 Phase Impedance Matrix
          5. 26.1.1.5 Sequence Impedances
          6. 26.1.1.6 Underground Lines
          7. 26.1.1.7 Concentric Neutral Cable
          8. 26.1.1.8 Tape Shielded Cables
        2. 26.1.2 Shunt Admittance
          1. 26.1.2.1 Overhead Lines
          2. 26.1.2.2 Underground Lines
          3. 26.1.2.3 Concentric Neutral
          4. 26.1.2.4 Tape Shield Cable
        3. 26.1.3 Line Segment Models
          1. 26.1.3.1 Exact Line Segment Model
          2. 26.1.3.2 Approximate Line Segment Model
        4. 26.1.4 Step-Voltage Regulators
          1. 26.1.4.1 Voltage Regulator in the Raise Position
          2. 26.1.4.2 Voltage Regulator in the Lower Position
          3. 26.1.4.3 Line Drop Compensator
          4. 26.1.4.4 Wye Connected Regulators
          5. 26.1.4.5 Voltage Equations
          6. 26.1.4.6 Current Equations
          7. 26.1.4.7 Closed Delta Connected Regulators
          8. 26.1.4.8 Open Delta Connection
          9. 26.1.4.9 Generalized Equations
        5. 26.1.5 Transformer Bank Connections
          1. 26.1.5.1 Generalized Equations
          2. 26.1.5.2 Common Variable and Matrices
          3. 26.1.5.3 Per-Unit System
          4. 26.1.5.4 Matrix Definitions
          5. 26.1.5.5 Thevenin Equivalent Circuit
          6. 26.1.5.6 Center Tapped Transformers
        6. 26.1.6 Load Models
          1. 26.1.6.1 Wye Connected Loads
          2. 26.1.6.2 Delta Connected Loads
        7. 26.1.7 Shunt Capacitor Models
          1. 26.1.7.1 Wye Connected Capacitor Bank
          2. 26.1.7.2 Delta Connected Capacitor Bank
      2. 26.2 Analysis
        1. 26.2.1 Power-Flow Analysis
          1. 26.2.1.1 The Ladder Iterative Technique
          2. 26.2.1.2 The Unbalanced Three-Phase Distribution Feeder
          3. 26.2.1.3 Applying the Ladder Iterative Technique
          4. 26.2.1.4 Final Notes
          5. 26.2.1.5 Short-Circuit Analysis
      3. References
    3. Chapter 27 - Power System Operation and Control
      1. 27.1 Implementation of Distribution Automation
      2. 27.2 Distribution SCADA History
        1. 27.2.1 SCADA System Elements
        2. 27.2.2 Distribution SCADA
        3. 27.2.3 Host Equipment
        4. 27.2.4 Host Computer System
          1. 27.2.4.1 SCADA Servers
        5. 27.2.5 Communication Front-End Processors
        6. 27.2.6 Full Graphics User Interface
        7. 27.2.7 Relational Databases, Data Servers, and Web Servers
        8. 27.2.8 Host to Field Communications
      3. 27.3 Field Devices
        1. 27.3.1 Modern RTU
        2. 27.3.2 PLCs and IEDs
        3. 27.3.3 Substation
        4. 27.3.4 Line
        5. 27.3.5 Other Line Controller Schemes
        6. 27.3.6 Tactical and Strategic Implementation Issues
        7. 27.3.7 Distribution Management Platform
        8. 27.3.8 Advanced Distribution Applications
      4. 27.4 Integrated SCADA System
        1. 27.4.1 Trouble Call and Outage Management System
        2. 27.4.2 Distribution Operations Training Simulator
      5. 27.5 Security
      6. 27.6 Practical Considerations
        1. 27.6.1 Choosing the Vendor
          1. 27.6.1.1 Choosing a Platform Vendor
      7. 27.7 Standards
        1. 27.7.1 Internal Standards
        2. 27.7.2 Industry Standards
      8. 27.8 Deployment Considerations
        1. 27.8.1 Support Organization
    4. Chapter 28 - Hard to Find Information (on Distribution System Characteristics and Protection)
      1. 28.1 Overcurrent Protection
        1. 28.1.1 Introduction
        2. 28.1.2 Fault Levels
          1. 28.1.2.1 Low-Impedance Faults
          2. 28.1.2.2 High-Impedance Faults
        3. 28.1.3 Surface Current Levels
        4. 28.1.4 Reclosing and Inrush
        5. 28.1.5 Cold Load Pickup
        6. 28.1.6 Calculation of Fault Current
        7. 28.1.7 Current Limiting Fuses
        8. 28.1.8 Rules for Application of Fuses
        9. 28.1.9 More Overcurrent Rules
        10. 28.1.10 Capacitor Fusing
        11. 28.1.11 Conductor Burndown
        12. 28.1.12 Protective Device Numbers
        13. 28.1.13 Protection Abbreviations
        14. 28.1.14 Simple Coordination Rules
        15. 28.1.15 Lightning Characteristics
        16. 28.1.16 Arc Impedance
      2. 28.2 Transformers
        1. 28.2.1 Saturation Curve
        2. 28.2.2 Insulation Levels
        3. 28.2.3 Δ-Y Transformer Banks
          1. 28.2.3.1 Transformer Loading
      3. 28.3 Instrument Transformers
        1. 28.3.1 Two Types
        2. 28.3.2 Accuracy
        3. 28.3.3 Potential Transformers
        4. 28.3.4 Current Transformer
        5. 28.3.5 H-Class
        6. 28.3.6 Current Transformer Facts
        7. 28.3.7 Glossary of Transducer Terms
      4. 28.4 Loading
        1. 28.4.1 Transformer Loading Basics
        2. 28.4.2 Examples of Substation Transformer Loading Limits
        3. 28.4.3 Distribution Transformers
        4. 28.4.4 Ampacity of Overhead Conductors
        5. 28.4.5 Emergency Ratings of Equipment
      5. 28.5 Miscellaneous Loading Information
    5. Chapter 29 - Real-Time Control of Distributed Generation
      1. 29.1 Local Site DG Control
      2. 29.2 Hierarchical Control: Real-Time Control
        1. 29.2.1 Data Flow to Upper Layers
        2. 29.2.2 Data Flow to Lower Layers
      3. 29.3 Control of DGs at Circuit Level
        1. 29.3.1 Estimating Loading throughout Circuit
        2. 29.3.2 Siting DGs for Improving Efficiency and Reliability
      4. 29.4 Hierarchical Control: Forecasting Generation
      5. References
    6. Chapter 30 - Distribution Short-Circuit Protection
      1. 30.1 Basics of Distribution Protection
        1. 30.1.1 Reach
        2. 30.1.2 Inrush and Cold-Load Pickup
      2. 30.2 Protection Equipment
        1. 30.2.1 Circuit Interrupters
        2. 30.2.2 Circuit Breakers
        3. 30.2.3 Circuit Breaker Relays
        4. 30.2.4 Reclosers
        5. 30.2.5 Expulsion Fuses
          1. 30.2.5.1 Fuse Cutouts
        6. 30.2.6 Current-Limiting Fuses
      3. 30.3 Transformer Fusing
      4. 30.4 Lateral Tap Fusing and Fuse Coordination
      5. 30.5 Station Relay and Recloser Settings
      6. 30.6 Arc Flash
      7. 30.7 Coordinating Devices
        1. 30.7.1 Expulsion Fuse–Expulsion Fuse Coordination
        2. 30.7.2 Current-Limiting Fuse Coordination
        3. 30.7.3 Recloser–Expulsion Fuse Coordination
        4. 30.7.4 Recloser–Recloser Coordination
        5. 30.7.5 Coordinating Instantaneous Elements
      8. 30.8 Fuse Saving versus Fuse Blowing
        1. 30.8.1 Industry Usage
        2. 30.8.2 Effects on Momentary and Sustained Interruptions
        3. 30.8.3 Coordination Limits of Fuse Saving
        4. 30.8.4 Long-Duration Faults and Damage with Fuse Blowing
        5. 30.8.5 Long-Duration Voltage Sags with Fuse Blowing
        6. 30.8.6 Optimal Implementation of Fuse Saving
        7. 30.8.7 Optimal Implementation of Fuse Blowing
      9. 30.9 Other Protection Schemes
        1. 30.9.1 Time Delay on the Instantaneous Element (Fuse Blowing)
        2. 30.9.2 High–Low Combination Scheme
        3. 30.9.3 SCADA Control of the Protection Scheme
        4. 30.9.4 Adaptive Control by Phases
      10. 30.10 Reclosing Practices
        1. 30.10.1 Reclose Attempts and Dead Times
        2. 30.10.2 Immediate Reclose
          1. 30.10.2.1 Effect on Sensitive Residential Devices
          2. 30.10.2.2 Delay Necessary to Avoid Retriggering Faults
          3. 30.10.2.3 Reclose Impacts on Motors
      11. 30.11 Single-Phase Protective Devices
        1. 30.11.1 Single-Phase Reclosers with Three-Phase Lockout
      12. References
  8. Section V - Electric Power Utilization
    1. Chapter 31 - Metering of Electric Power and Energy
      1. 31.1 The Electromechanical Meter
        1. 31.1.1 Single Stator Electromechanical Meter
      2. 31.2 Blondel’s Theorem
      3. 31.3 The Electronic Meter
        1. 31.3.1 Multifunction Meter
        2. 31.3.2 Voltage Ranging and Multiform Meter
        3. 31.3.3 Site Diagnostic Meter
      4. 31.4 Special Metering
        1. 31.4.1 Demand Metering
          1. 31.4.1.1 What is Demand?
          2. 31.4.1.2 Why is Demand Metered?
          3. 31.4.1.3 Integrating Demand Meters
        2. 31.4.2 Time of Use Metering
        3. 31.4.3 Interval Data Metering
        4. 31.4.4 Pulse Metering
          1. 31.4.4.1 Recording Pulses
          2. 31.4.4.2 Pulse Circuits
        5. 31.4.5 Totalized Metering
      5. 31.5 Instrument Transformers
        1. 31.5.1 Measuring kVA
      6. 31.6 Defining Terms
      7. Further Information
    2. Chapter 32 - Basic Electric Power Utilization: Loads, Load Characterization and Load Modeling
      1. 32.1 Basic Load Characterization
      2. 32.2 Composite Loads and Composite Load Characterization
        1. 32.2.1 Coincidence and Diversity
        2. 32.2.2 Load Curves and Load Duration
      3. 32.3 Composite Load Modeling
      4. 32.4 Other Load-Related Issues
        1. 32.4.1 Cold Load Pickup
        2. 32.4.2 Harmonics and Other Nonsinusoidal Loads
      5. References
      6. Further Information
    3. Chapter 33 - Electric Power Utilization: Motors
      1. 33.1 Some General Perspectives
      2. 33.2 Operating Modes
      3. 33.3 Motor, Enclosure, and Controller Types
      4. 33.4 System Design
        1. 33.4.1 Load Requirements
        2. 33.4.2 Environmental Requirements
        3. 33.4.3 Electrical Source Options
        4. 33.4.4 Preliminary System Design
        5. 33.4.5 System Ratings
        6. 33.4.6 System Data Acquisition
        7. 33.4.7 Engineering Studies
        8. 33.4.8 Final System Design
        9. 33.4.9 Field Testing
      5. Further Information
      6. Organizations
      7. Books (An Abridged Sample)
    4. Chapter 34 - Linear Electric Motors
      1. 34.1 Linear Synchronous Motors
        1. 34.1.1 Basic Geometries and Constructions
        2. 34.1.2 Classification
          1. 34.1.2.1 PM Motors with Active Reaction Rail
          2. 34.1.2.2 PM Motors with Passive Reaction Rail
        3. 34.1.3 Flux-Switching PM Linear Motors
        4. 34.1.4 Motors with Electromagnetic Excitation
        5. 34.1.5 Motors with Superconducting Excitation System
      2. 34.2 Linear Induction Motors
        1. 34.2.1 Basic Geometries and Constructions
        2. 34.2.2 Propulsion of Wheel-on-Rail Vehicles
      3. 34.3 Variable Reluctance Motors
      4. 34.4 Stepping Motors
      5. 34.5 Switched Reluctance Motors
      6. 34.6 Linear Positioning Stages
      7. References
  9. Section VI - Power Quality
    1. Chapter 35 - Introduction
    2. Chapter 36 - Wiring and Grounding for Power Quality
      1. 36.1 Definitions and Standards
        1. 36.1.1 The National Electric Code
        2. 36.1.2 From the IEEE Dictionary—Std. 100
        3. 36.1.3 Green Book (IEEE Std. 142) Definitions
        4. 36.1.4 NEC Definitions
      2. 36.2 Reasons for Grounding
        1. 36.2.1 Personal Safety
        2. 36.2.2 Protective Device Operation
        3. 36.2.3 Noise Control
      3. 36.3 Typical Wiring and Grounding Problems
        1. 36.3.1 Insulated Grounds
        2. 36.3.2 Ground Loops
        3. 36.3.3 Missing Safety Ground
        4. 36.3.4 Multiple Neutral to Ground Bonds
        5. 36.3.5 Additional Ground Rods
        6. 36.3.6 Insufficient Neutral Conductor
        7. 36.3.7 Summary
      4. 36.4 Case Study
        1. 36.4.1 Case Study: Flickering Lights
          1. 36.4.1.1 Background
          2. 36.4.1.2 The Problem
          3. 36.4.1.3 The Solution
          4. 36.4.1.4 Conclusions
      5. References
    3. Chapter 37 - Harmonics in Power Systems
      1. Further Information
    4. Chapter 38 - Voltage Sags
      1. 38.1 Voltage Sag Characteristics
        1. 38.1.1 Voltage Sag Magnitude: Monitoring
        2. 38.1.2 Origin of Voltage Sags
        3. 38.1.3 Voltage Sag Magnitude: Calculation
        4. 38.1.4 Propagation of Voltage Sags
        5. 38.1.5 Critical Distance
        6. 38.1.6 Voltage Sag Duration
        7. 38.1.7 Phase-Angle Jumps
        8. 38.1.8 Three-Phase Unbalance
      2. 38.2 Equipment Voltage Tolerance
        1. 38.2.1 Voltage Tolerance Requirement
        2. 38.2.2 Voltage Tolerance Performance
        3. 38.2.3 Single-Phase Rectifiers
        4. 38.2.4 Three-Phase Rectifiers
      3. 38.3 Mitigation of Voltage Sags
        1. 38.3.1 From Fault to Trip
        2. 38.3.2 Reducing the Number of Faults
        3. 38.3.3 Reducing the Fault-Clearing Time
        4. 38.3.4 Changing the Power System
        5. 38.3.5 Installing Mitigation Equipment
        6. 38.3.6 Improving Equipment Voltage Tolerance
        7. 38.3.7 Different Events and Mitigation Methods
      4. References
      5. Further Information
    5. Chapter 39 - Voltage Fluctuations and Lamp Flicker in Power Systems
      1. Further Information
    6. Chapter 40 - Power Quality Monitoring
      1. 40.1 Selecting a Monitoring Point
      2. 40.2 What to Monitor
      3. 40.3 Selecting a Monitor
        1. 40.3.1 Voltage
        2. 40.3.2 Voltage Waveform Disturbances
        3. 40.3.3 Current Recordings
        4. 40.3.4 Current Waveshape Disturbances
        5. 40.3.5 Harmonics
        6. 40.3.6 Flicker
        7. 40.3.7 High Frequency Noise
        8. 40.3.8 Other Quantities
      4. 40.4 Summary