Answers to Some Problems

Chapter 1

P1.2 a) e1 = cos φ e1 + sin φ e2, e2 = −sin φ e1 + cos φ e2, e3 = e3

A′1 = A1 cos φ + A2 sin φ, A′2 = − A1 sin φ + A2 cos φ, A′3 = A3

Image

b) B = (μoI/2πr2)(−yex + xey) is a vector equal to (μoIr2)( ez × r′), while B′ = (μoI/2πr2) [(x′ sin 2φ + y′ cos 2φ) e1 + (x′ cos 2φ − y′ sin 2φ) e2] is not a vector.

P1.4 Image n.E(r) = 4πR2f(R), ∇.E = 2f/r + ∂rf and Image ∇.E = 4πR2f(R).

P1.5 Let xα = Σβ Rβα xβ. We find ∂α = Σβ ∂′β.(∂xβ/∂xα) = Σβ ∂′β Rαβ = Σβ Rαβ ∂′β.

P1.6 b) If dr is on V = Constant, dV = ΣααV dxα = V.dr = 0, hence ∇V is normal to dr. c) If only x varies, as r2 = x2 + y2 + z2, we get 2r dr = 2x dx, hence ∂αr = xα/r and ∂αf(r) = (df/dr)(∂αr) = (df/dr)(xα/r). If f = K/r, we find ∂αf(r) = (−K/r2)(xα/r) = −Kxα/r3.

P1.8 a) If V = K(p.r)/r3, E = −V = (K/r3)[3(p.r) r/r2p]. If p = pez, V = Kpz/r3 and E = (Kp/r3)[3zr/r2ez]. b) If Image, we find Image.Using spherical coordinates, if , we find sin θ eφ/r2 and .

P1.9 As ∇ × E = 0, E is the gradient of ...

Get Electromagnetism: Maxwell Equations, Wave Propagation and Emission now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.