Electronic Measurements and Instrumentation

Book description

Electronic Measurements and Instrumentation provides a comprehensive blend of the theoretical and practical aspects of electronic measurements and instrumentation. It provides a comprehensive coverage of each topic in the syllabus with a special fo

Table of contents

  1. Cover
  2. Title Page
  3. Brief Contents
  4. Contents
  5. About the Author
  6. By the Same Author
  7. Dedication Page
  8. Foreword
  9. Preface
  10. 1: Measurements and Instruments
    1. 1.1 - Introduction
    2. 1.2 - Terminology
      1. 1.2.1 - Advantages of Instrumentation Systems
      2. 1.2.2 - Block Schematics of Measuring Systems
      3. 1.2.3 - Other Systems
      4. 1.2.4 - Objectives of Measurement
      5. 1.2.5 - Comparison between Analog and Digital Instruments
      6. 1.2.6 - Factors for the Selection of Analog and Digital Equipments
    3. 1.3 - Performance Characteristics
      1. 1.3.1 - Definitions
    4. 1.4 - Significant Figures
    5. 1.5 - Dynamic Characteristics
    6. 1.6 - Types of Errors
      1. 1.6.1 - Gross Errors
      2. 1.6.2 - Systematic Errors
      3. 1.6.3 - Random Errors
    7. 1.7 - Statistical Analysis
      1. 1.7.1 - Probability of Errors and Gaussian Curve
    8. 1.8 - Measurement Standards
    9. 1.9 - Suspension Galvanometer
    10. 1.10 - D'Arsonval Movement
      1. 1.10.1 - Taut-Band Suspension
      2. 1.10.2 - Temperature Compensation
      3. 1.10.3 - Shunt Resistor
      4. 1.10.4 - Ayrton Shunt
    11. 1.11 - Direct Current Meters
    12. 1.12 - D'Arsonval Meter Movement Used in DC Voltmeters
      1. 1.12.1 - Ammeter Loading Effect
    13. 1.13 - DC Voltmeters
      1. 1.13.1 - Multirange Voltmeter
    14. 1.14 - Ohmmeter
      1. 1.14.1 - Series-Type Ohmmeter
      2. 1.14.2 - Shunt-Type Ohmmeter
      3. 1.14.3 - D'Arsonval Meter Movement Used in Ohmmeter
      4. 1.14.4 - Multiple Range Ohmmeters
      5. 1.14.5 - Electrolyte Capacitor Leakage Tests
      6. 1.14.6 - For Non-Electrolyte Capacitors
    15. 1.15 - Multimeter
    16. 1.16 - Alternating Current-Indicating Instruments
      1. 1.16.1 - Electrodynamometer
    17. 1.17 - Rectifier-Type Instruments
    18. 1.18 - Meter Protection
    19. 1.19 - Extension of Range
    20. 1.20 - Frequency Compensation
    21. 1.21 - Electronic Voltmeter (for DC)
    22. 1.22 - Electronic Voltmeter (for AC)
      1. 1.22.1 - Average Reading Voltmeter
      2. 1.22.2 - Peak Reading Voltmeter
      3. 1.22.3 - Peak-to-Peak Detector
    23. 1.23 - DC Meter with Amplifier
    24. 1.24 - Chopper-Stabilised Amplifier
    25. 1.25 - AC Voltmeter using Rectifiers
    26. 1.26 - True RMS-Responding Voltmeter
    27. 1.27 - Balanced Bridge Voltmeter (VTVM)
      1. 1.27.1 - Advantages
      2. 1.27.2 - Disadvantages
    28. 1.28 - Transistor Voltmeter (TVM)
    29. 1.29 - Electronic Multimeter
      1. 1.29.1 - Resistance Ranges
    30. 1.30 - AC Current Measurement
      1. 1.30.1 - Differential Voltmeter
    31. 1.31 - Differential Amplifier
    32. 1.32 - Alternating Current Instruments (AC Meters)
      1. 1.32.1 - D'Arsonval Meter Movement for AC Circuit
      2. 1.32.2 - Modified Circuit for AC Measurements
      3. 1.32.3 - D'Arsonval Meter Movement Circuit (FWR)
    33. 1.33 - Electrodynamometer Movement
      1. 1.33.1 - Transfer Instruments
      2. 1.33.2 - Iron Vane-Meter Movement
    34. 1.34 - Thermocouple Meter
      1. 1.34.1 - Constant Voltage Source
      2. 1.34.2 - Constant Current Source
      3. 1.34.3 - Volt Box
      4. 1.34.4 - Factors to be Considered in the Selection of an Analog Voltmeter
    35. 1.35 - Digital Voltmeters
      1. 1.35.1 - General Specifications
    36. 1.36 - Ramp-Type DVM
    37. 1.37 - Staircase Ramp-Type DVM
    38. 1.38 - Dual Slope Integrating-Type DVM
    39. 1.39 - Successive-Approximation Conversion (SAC)
      1. 1.39.1 - Block Schematic
    40. 1.40 - Continuous Balance-Type DVM
    41. 1.41 - Automatic Polarity Indication for DVM
    42. 1.42 - Autoranging for DVM
      1. 1.42.1 - Typical Case
    43. 1.43 - 3¾ Digit Display
    44. 1.44 - Picoammeter
      1. 1.44.1 - Applications
    45. 1.45 - Low-Current Ammeter Applications
      1. 1.45.1 - Wafer-Level Photodiode Testing
      2. 1.45.2 - Monitoring and Control of Focused Ion Beam Currents
    46. 1.46 - High-Resistance Measurements
    47. 1.47 - Summary
  11. 2: Waveform Generators
    1. 2.1 - Introduction
    2. 2.2 - Considerations in Choosing an Oscillator or Signal Generator
    3. 2.3 - Sine Wave Generator
    4. 2.4 - Oscillator Circuit
    5. 2.5 - Attenuator
    6. 2.6 - Frequency-Synthesised Signal Generator
    7. 2.7 - Sweep-Frequency Generator
    8. 2.8 - Pulse and Square Wave Generator
    9. 2.9 - Function Generator
    10. 2.10 - Arbitrary Waveform Generator
      1. 2.10.1 - Applications
    11. 2.11 - Video Signal Generator
    12. 2.12 - Summary
  12. 3: Signal Analysers
    1. 3.1 - Introduction
    2. 3.2 - Wave Analyser
    3. 3.3 - AF Wave Analyser
    4. 3.4 - High-Frequency Wave Analyser
      1. 3.4.1 - Frequency Mixers
    5. 3.5 - Harmonic Distortion
      1. 3.5.1 - Tunable Selective Circuit
      2. 3.5.2 - Disadvantages
      3. 3.5.3 - Heterodyne Wave Analyser (Wavemeter)
      4. 3.5.4 - Fundamental Suppression Method of Distortion Measurement
    6. 3.6 - Heterodyne Wave Analyser
      1. 3.6.1 - Applications of Wave Analysers
    7. 3.7 - Tuned Circuit Harmonic Analyser
    8. 3.8 - Heterodyne Harmonic Analyser or Wavemeter
    9. 3.9 - Fundamental Suppression Harmonic Distortion Analyser
    10. 3.10 - Spectrum Analyser
      1. 3.10.1 - Characteristics of a Spectrum Analyser
      2. 3.10.2 - Applications of a Spectrum Analyser
      3. 3.10.3 - Basic Spectrum Analyser
      4. 3.10.4 - Factors to be Considered in a Spectrum Analyser
    11. 3.11 - Low-Frequency Spectrum Analyser
      1. 3.11.1 - Applications
    12. 3.12 - Power Analyser
      1. 3.12.1 - Communications Signal Analyser
      2. 3.12.2 - Logic Analysers
      3. 3.12.3 - Network Monitoring System
      4. 3.12.4 - System Architecture
      5. 3.12.5 - Features
      6. 3.12.6 - Applications
    13. 3.13 - Capacitance—Voltage Analysers
    14. 3.14 - Oscillators
      1. 3.14.1 - Considerations in Choosing an Oscillator
    15. 3.15 - Summary
  13. 4: Oscilloscopes
    1. 4.1 - Introduction
    2. 4.2 - Cathode Ray Oscilloscope
    3. 4.3 - Block Diagram of a CRO
    4. 4.4 - Cathode Ray Tube (CRT)
    5. 4.5 - Graticules
    6. 4.6 - Electrostatic Deflection Sensitivity
      1. 4.6.1 - Design Criteria
    7. 4.7 - Different Controls in a CRO
      1. 4.7.1 - How to Operate a CRO
    8. 4.8 - Time Base Generators
      1. 4.8.1 - Time Base Circuits
    9. 4.9 - Triggered Mode
      1. 4.9.1 - Free-Running Mode
      2. 4.9.2 - Synchronisation of the Sweep Circuit
      3. 4.9.3 - Types of CROS
      4. 4.9.4 - Sections of CRTs
      5. 4.9.5 - Deflection Sensitivity Equation
    10. 4.10 - Neon Time Base Circuit
      1. 4.10.1 - Frequency of Neon Time Base
      2. 4.10.2 - Neon Lamp
      3. 4.10.3 - Free-Running Mode of CRO
      4. 4.10.4 - Using CRO in Triggered Mode
      5. 4.10.5 - Automode of Sweep
      6. 4.10.6 - Normal Mode
    11. 4.11 - Time Base Circuit for a General-Purpose CRO
      1. 4.11.1 - Synchronisation Issues
      2. 4.11.2 - Line Synchronisation
    12. 4.12 - Lissajous Figures
    13. 4.13 - Types of CRO Probes
      1. 4.13.1 - Direct Probe
      2. 4.13.2 - High-Impedance Probe
      3. 4.13.3 - Detector Pro be
      4. 4.13.4 - High-Voltage Probe
    14. 4.14 - High-Frequency CRO Considerations
    15. 4.15 - Delay Lines in CROs
      1. 4.15.1 - Lumped Parameter Delay Line
      2. 4.15.2 - Distributed Parameter Delay Line
    16. 4.16 - Applications of CRO
    17. 4.17 - Summary
  14. 5: Special Types of CROs
    1. 5.1 - Special Types of Oscilloscopes
    2. 5.2 - Dual Beam CRO
    3. 5.3 - Dual Trace CRO
    4. 5.4 - Sampling Oscilloscope
      1. 5.4.1 - Sampling Oscilloscopes — Vertical and Time Base
      2. 5.4.2 - Sampling Vertical
      3. 5.4.3 - Sampling Time Base
    5. 5.5 - Storage Oscilloscopes
      1. 5.5.1 - Mesh Storage
      2. 5.5.2 - Variable Persistence
      3. 5.5.3 - Phosphor Storage
      4. 5.5.4 - Phosphor Characteristics
      5. 5.5.5 - Persistence of Phosphor Materials
      6. 5.5.6 - CRO Subsytems
    6. 5.6 - Digital Storage CRO
      1. 5.6.1 - CRO Probes
    7. 5.7 - Frequency/Period-Timer/Counter Circuit
    8. 5.8 - Frequency Measurement
    9. 5.9 - Period Measurement
      1. 5.9.1 - Advantages
    10. 5.10 - Errors in Frequency/Period Measurements
      1. 5.10.1 - Errors Because of Crystal Stability
    11. 5.11 - Universal Counters
    12. 5.12 - Extending the Range of Frequency Counters
    13. 5.13 - Glossary
    14. 5.14 - The ABC's of Oscilloscopes
    15. 5.15 - Summary
  15. 6: DC and AC Bridges
    1. 6.1 - Introduction
    2. 6.2 - DC Bridges
    3. 6.3 - Wheatstone Bridge
      1. 6.3.1 - Operation
      2. 6.3.2 - Measurement Errors
      3. 6.3.3 - Thevenin's Equivalent Circuit
    4. 6.4 - Kelvin Bridge
      1. 6.4.1 - Kelvin Double Bridge
      2. 6.4.2 - Applications
    5. 6.5 - Strain Gauge Bridge Circuit
    6. 6.6 - AC Bridges
      1. 6.6.1 - General Form of Bridge Circuit
    7. 6.7 - Maxwell Bridge
      1. 6.7.1 - Phasor Diagram for the Maxwell Bridge
    8. 6.8 - Hay Bridge
      1. 6.8.1 - Phasor Diagram for Hay Bridge
    9. 6.9 - Schering Bridge
      1. 6.9.1 - Phasor Diagram for a Schering Bridge
    10. 6.10 - Wien Bridge
      1. 6.10.1 - Phasor Diagram for the Wien Bridge
    11. 6.11 - Anderson Bridge
    12. 6.12 - Resonance Bridge
    13. 6.13 - Similar Angle Bridge
    14. 6.14 - Radio Frequency Bridge (Subtitution Technique)
    15. 6.15 - Wagner's Ground Connection
    16. 6.16 - Twin-T Null Network
    17. 6.17 - Bridged-T Network
    18. 6.18 - Detectors for AC Bridges
    19. 6.19 - Phasor Diagrams
    20. 6.20 - Recorders
      1. 6.20.1 - Introduction
    21. 6.21 - Strip-Chart Recorders
      1. 6.21.1 - Galvanometric Recorders
      2. 6.21.2 - Sensitivity
      3. 6.21.3 - Transient Response
    22. 6.22 - Pen-Driving Mechanism
    23. 6.23 - Other Features
    24. 6.24 - Servorecorders
    25. 6.25 - Servobalancing Potentiometric Recorder
    26. 6.26 - Characteristics of Typical Servorecorders
    27. 6.27 - Oscillographic Recorders
    28. 6.28 - Magnetic Tape Recorders
      1. 6.28.1 - Direct AM Recording
      2. 6.28.2 - Frequency Modulation Recording
    29. 6.29 - Recorders (Contd.)
      1. 6.29.1 - X–Y Recorders
      2. 6.29.2 - Self-Balancing Potentiometers
      3. 6.29.3 - Working of a Servotype Motor
      4. 6.29.4 - Chopper
      5. 6.29.5 - Servotype X–Y Recorders
      6. 6.29.6 - Y-Scale
    30. 6.30 - Galvonometer Oscillographs
      1. 6.30.1 - Applications
    31. 6.31 - Summary
  16. 7: Transducers
    1. 7.1 - Introduction
      1. 7.1.1 - Examples
    2. 7.2 - Classification of Transducers
    3. 7.3 - Active and Passive Transducers
      1. 7.3.1 - Factors that Affect the Performance of a Transducer
      2. 7.3.2 - Applications
    4. 7.4 - Force and Displacement Transducers
      1. 7.4.1 - Potentiometer
      2. 7.4.2 - Potentiometric Transducer
      3. 7.4.3 - Loading Effect on a Potentiometer
      4. 7.4.4 - Resolution
      5. 7.4.5 - Linear Potentiometers
      6. 7.4.6 - Non-Linear Potentiometers
      7. 7.4.7 - Noise
    5. 7.5 - Resistance Strain Gauges
    6. 7.6 - Bonded-Type Strain Gauges
      1. 7.6.1 - Filament Construction
      2. 7.6.2 - Materials of the Filament Wire
      3. 7.6.3 - Base Carrier Material
      4. 7.6.4 - Strain Gauge Cements
      5. 7.6.5 - Temperature Effect on Strain Gauges
      6. 7.6.6 - Measurement of Strain
      7. 7.6.7 - Strain Gauge Circuitry
      8. 7.6.8 - The Ballast Circuit
      9. 7.6.9 - The Wheatstone Bridge Circuit
      10. 7.6.10 - Circuit for Calibration
      11. 7.6.11 - Mounting of Strain Gauges
      12. 7.6.12 - Commercial Strain-Measuring Systems
      13. 7.6.13 - Stress Measurement on Rotating Members
      14. 7.6.14 - Special Problems in Strain Gauge Applications
      15. 7.6.15 - Semiconductor Strain Gauges
    7. 7.7 - Summary
  17. 8: Other Types of Transducers
    1. 8.1 - Introduction
    2. 8.2 - Resistance Thermometers
      1. 8.2.1 - Self-Heating
      2. 8.2.2 - Advantages of Wire Resistance Thermometers
      3. 8.2.3 - Disadvantages
    3. 8.3 - Semiconducting-Resistance Temperature Transducers (Thermistors)
      1. 8.3.1 - Circuit Employed
      2. 8.3.2 - Advantages
      3. 8.3.3 - Disadvantages
    4. 8.4 - Hot Wire Anemometer
      1. 8.4.1 - Constant Current Type
      2. 8.4.2 - Measurement of Direction of Average Flow
    5. 8.5 - Other Variable Resistance Transducers
      1. 8.5.1 - Contact Pressure Transducer
      2. 8.5.2 - Humidity Measurement
      3. 8.5.3 - Light
    6. 8.6 - Variable Inductance Transducers
      1. 8.6.1 - Linear Variable Differential Transformer (LVDT)
      2. 8.6.2 - Applications of LVDT
      3. 8.6.3 - LVDT Load Cells
    7. 8.7 - Synchros
    8. 8.8 - Variable Reluctance Accelerometer
      1. 8.8.1 - Microsyn
    9. 8.9 - Temperature Measurement
      1. 8.9.1 - Electric Methods
      2. 8.9.2 - Electrical Methods
    10. 8.10 - Thermocouples
      1. 8.10.1 - Thermocouple Junction
      2. 8.10.2 - Thermocouple Insulation
      3. 8.10.3 - Soldered, Drawn, or Rolled Sheathed Thermocouple Construction
      4. 8.10.4 - Disposable-Tip Thermocouples
      5. 8.10.5 - Homogeneity of Thermocouple Wires
      6. 8.10.6 - Installation of Thermocouples
      7. 8.10.7 - Cold Junction Compensation
      8. 8.10.8 - Resistance Thermometry
    11. 8.11 - Platinum Resistance Thermometers
    12. 8.12 - Special Resistance Thermometer
      1. 8.12.1 - Performance and Testing Procedure
      2. 8.12.2 - Insulation Resistance
      3. 8.12.3 - Vibration Resistance
    13. 8.13 - Thermistors
      1. 8.13.1 - Thermistor Construction Techniques
      2. 8.13.2 - Thermistor Performance Characteristics
      3. 8.13.3 - Applications of Thermistor
      4. 8.13.4 - Sensistors
    14. 8.14 - Digital Temperature-Sensing System
    15. 8.15 - Miscellaneous Transducers
      1. 8.15.1 - Flow Measurements
      2. 8.15.2 - Ultrasonic Flow Meters
      3. 8.15.3 - Electromagnetic Flow Meter
      4. 8.15.4 - Theory of Head Flow Meters
      5. 8.15.5 - Various Tap Connections
      6. 8.15.6 - Advantages and Limitations
      7. 8.15.7 - Characteristics of Head Flow Meters
    16. 8.16 - Area Flow Meters
      1. 8.16.1 - Rotameters
      2. 8.16.2 - Piston-Type Area Meter
      3. 8.16.3 - Laser Doppler Anemometer (LDA)
    17. 8.17 - Positive Displacement Meters
      1. 8.17.1 - Basic Requirements
      2. 8.17.2 - Nutating Piston Meters
      3. 8.17.3 - Rotating Meters
      4. 8.17.4 - Oscillating Piston Meters
    18. 8.18 - Magnetic Flow Meter
      1. 8.18.1 - Flow Meter Requirements
    19. 8.19 - Variable Capacitance Transducers
      1. 8.19.1 - Advantages of Capacitance Transducers
      2. 8.19.2 - Practical Capacitor Pickups
      3. 8.19.3 - Feedback-Type Capacitance Pickup
      4. 8.19.4 - Carbon Microphone
      5. 8.19.5 - Circuitry for Capacitance Transducers
      6. 8.19.6 - Frequency-Modulating Oscillator Circuit
      7. 8.19.7 - Circuits Using DC Excitation
      8. 8.19.8 - AC Bridges for Amplitude Modulation
      9. 8.19.9 - Pulsewidth-Modulating Circuit
    20. 8.20 - Piezoelectric Transducer
      1. 8.20.1 - Materials
      2. 8.20.2 - Equivalent Circuit
      3. 8.20.3 - Piezoelectric Coefficients
      4. 8.20.4 - Modes of Deformation
      5. 8.20.5 - Multiple Arrangements (Stacks)
      6. 8.20.6 - Bimorphs
      7. 8.20.7 - Bimorph Twisters
      8. 8.20.8 - General Form of Piezoelectric Transducers
      9. 8.20.9 - Available Typical Piezoelectric Accelerometers
      10. 8.20.10 - Shock Accelerometer
      11. 8.20.11 - Environmental Effects
    21. 8.21 - Magnetostrictive Transducers
      1. 8.21.1 - Magnetostrictive Materials
      2. 8.21.2 - Practical Forms of Transducers
      3. 8.21.3 - Magnetostrictive Torque Transducers
      4. 8.21.4 - Errors
      5. 8.21.5 - Temperature
      6. 8.21.6 - Variation of Supply Voltage
      7. 8.21.7 - Eddy Currents
      8. 8.21.8 - Input Impedance
    22. 8.22 - Liquid-Level Measurement
      1. 8.22.1 - Direct Methods
      2. 8.22.2 - Indirect Liquid-Level Measurement
      3. 8.22.3 - Capacitance-Level Gauge
    23. 8.23 - Ultrasonic-Level Gauge
    24. 8.24 - Measurement of Humidity and Moisture
    25. 8.25 - Photoconductive Cells
    26. 8.26 - Photo Pulse Pickup
    27. 8.27 - Digital Encoders and Encoder Transducers
      1. 8.27.1 - Shaft Position Encoders
      2. 8.27.2 - Encoder Transducers
    28. 8.28 - Fibre Optic Displacement Transducer
      1. 8.28.1 - Absolute Motion Devices
      2. 8.28.3 - Measurement of Velocity
      3. 8.28.4 - Translational Velocity Transducer Moving Coil Pickup
    29. 8.29 - DC Tachometer Generators for Rotary Velocity Measurement
      1. 8.29.1 - AC Tachogenerator for Rotary Velocity Measurement
    30. 8.30 - Force Measurements
      1. 8.30.1 - Balance
      2. 8.30.2 - Elastic Force Devices
    31. 8.31 - Electromechanical Methods
    32. 8.32 - Measurement of Pressure
      1. 8.32.1 - Moderate Pressure Measurement
      2. 8.32.2 - Manometers
    33. 8.33 - Elastic Transducers
    34. 8.34 - High-Pressure Measurement
    35. 8.35 - Low-Pressure Measurement (Vacuum Measurement)
      1. 8.35.1 - Thermal Conductivity Gauge or Pirani Gauge
    36. 8.36 - Temperature Measurements
    37. 8.37 - Data Acquisition Systems
    38. 8.38 - Summary
  18. References
  19. Appendix A
  20. Acknowledgements
  21. Copyright

Product information

  • Title: Electronic Measurements and Instrumentation
  • Author(s):
  • Release date: October 2009
  • Publisher(s): Pearson India
  • ISBN: 9788131775547