4.2. Models and Estimation Problems

In this section, we examine the basic concepts involved in parameter estimation. We describe the different components of a model and show how to find the adequate model for a given computer vision problem. Estimation is analyzed as a generic problem, and the differences between nonrobust and robust methods are emphasized. We also discuss the role of the optimization criterion in solving an estimation problem.

4.2.1. Elements of a model

The goal of data analysis is to provide, for data spanning a very high-dimensional space, an equivalent low-dimensional representation. A set of measurements consisting of n data vectors yiRq can be regarded as a point in Rnq. If the data can be described by a model with only ...

Get Emerging Topics in Computer Vision now with the O’Reilly learning platform.

O’Reilly members experience live online training, plus books, videos, and digital content from nearly 200 publishers.