November 2012
Beginner
733 pages
27h 41m
English
Content preview from Encyclopedia of Financial Models III
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
Start your free trial



A Review of No Arbitrage Interest Rate Models
Abstract: Interest rates are commonly modeled using stochastic differential equations. One-factor models use a stochastic differential equation to represent the short rate and two-factor models use a stochastic differential equation for both the short rate and the long rate. The stochastic differential equations used to model interest rates must capture some of the market properties of interest rates such as mean reversion and/or a volatility that depends on the level of interest rates. There are two distinct approaches used to implement the stochastic differential equations into a term structure model: equilibrium and no arbitrage.
In modeling the behavior of interest rates, stochastic differential equations (SDEs) are commonly used. The SDEs used to model interest rates must capture some of the market properties of interest rates such as mean reversion and/or a volatility that depends on the level of interest rates. For a one-factor model, the SDE is used to model the behavior of the short-term rate, referred to simply as the “short rate.” The addition of another factor (i.e., a two-factor model) involves extending the SDE to represent the behavior of the short rate and a long-term rate (i.e., long rate). ...