1Introduction

1.1 Evolution of Power System and Demand of Energy Storage

The normal operation of a power system constantly requires a balance of generation and demand. In traditional bulk power systems, the majority of power generation units are thermal (fossil fuel), hydro, and nuclear generators. Typically, the thermal or hydro generators are optimally dispatched to meet varying demands. Because of the huge demand for electricity to support the operation of modern society, thermal generators with a very large total installed capacity burn vast amounts of fossil resources each year. Over time, their greenhouse gas and other pollutant emissions lead to serious environmental problems.

To reduce the dependence on fossil energy, renewable energy generation (REG), represented by wind power and photovoltaic (PV) power generation, has been growing rapidly all over the world in recent years. According to data from Global Wind Energy Council (GWEC), the total installed capacity of wind worldwide was about 24 GW at the end of 2001, while this capacity reached 591 GW in 2018 [1], which increased by about 24 times. The global cumulative installed wind energy capacities from 2011 to 2018 are illustrated in Figure 1.1. In addition, as of the end of 2018, the total installed capacity of PV generation worldwide reached about 503 GW according to the statistics provided by the IEA Photovoltaic Power System Programme [2]. The total installed capacity of solar power generation was about 99.9 GW ...

Get Energy Storage for Power System Planning and Operation now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.