1Introduction

1.1 Introduction

Real‐world problems in the control of noise and vibration in aircraft, appliances, buildings, industry, and vehicles require the measurement of particular environmental parameters such as sound pressure, force, acceleration, velocity, displacement, etc. This process is often performed by using acoustical and vibration transducers. Vibration and acoustical sensors are transducers which convert a measured physical property (e.g. the vibration of a body or the propagation of a sound wave) into an electrical signal (voltage or charge). These electrical signals are often conditioned to provide signals suitable for the measurement devices. The signals are then amplified, attenuated, or transformed so that they can subsequently be analyzed and/or processed to provide the data of particular interest in the time domain and frequency domain. The information provided by these analyses is widely used to assess sources of noise and vibration, and design proper engineering control measures. For some cases, such as simple measurements of the A‐weighted sound pressure level, only limited amounts of processing are needed. In other cases with more sophisticated measurements, special analysis and processing is required. Such examples include modal analysis, sound intensity, wavelet analysis, machinery condition monitoring, beamforming, and acoustical holography, with which quite complicated signal analysis and processing may be needed. Some years ago, almost all ...

Get Engineering Acoustics now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.