3Proportions and Binomial Random Variables
In the example, if X = 93 out of n = 100, with 1 − β = 0.95, the value P
L
=0.8726
yields:
p
k
PP
k
PP
100
11
100
1 0.0502
L
k
L
k
k
L
k
L
k
k
100
93
100
100
0
92
∑∑
() ()
=
−=−
−
=
−
=
so 1 – p ≈ 0.9498 ≤ 1 − β = 0.95, so the lower condence limit for P is P
L
=
0.8726.
Computational considerations:
• SAS code
libname stuff 'H:\Personal Data\Equivalence & Noninferiority\
Programs & Output';
data calc;
set stuff.d20121026_test_1_1_example_data;
xc = 21;
power = 1 - probbnml(0.8,30,xc-1);/* Pr{Binomial > = xc} */
run;
proc freq data = calc;
tables outcome;
run;
proc print data = calc;/*dataset calc has columns n muL muA
sigma delta nc power */
run;
The SAS System 08:19 Friday, October 26, 2012 3
The FREQ Procedure
outcome
Cumulative Cumulative
outcome Frequency Percent Frequency Percent
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
0 4 13.33 4 13.33
1 26 86.67 30 100.00
The SAS System 08:19 Friday, October 26, 2012 4
Obs outcome xc power
1 1 21 0.93891
2 1 21 0.93891