43
3
Variances (Standard Deviations)
and Coefcients of Variation
Test 3.1 Single Variance (One-Sided)
Parameters:
σ=
0
2
maximum tolerable variance
1 – β = power to reject the null if variance equals
σ
0
2
Hypotheses:
σ>σH :
0
2
0
2
σ≤σH :
1
2
0
2
Data:
S
n
XX
=samplestandarddeviation =
1
1
i
i
n
2
1
()
=
Critical value(s):
Reject H
0
if
σ
χ−
−β
S
n
n
1
(1
)
2
0
2
1
2
where
n(1) 100(1 )
1
2
χ−=−β
−β
percentile of a chi-squared distribution with n−
1 degrees of freedom.
Discussion:
The quantity
σ
nS
(1)
a
2
2
44 Equivalence and Noninferiority Tests
has a chi-squared distribution when
σ=σ
a
22
. Suppose that
kk
fo
r>1
a
22
0
2
σ= σ .
Then
σ
=
σ
nS
nS
k
(1)(1)
a
2
2
2
2
0
2
and
σ
≤χ −σ
=
σ
χ−
−β
−β
nS
n
nS
n
k
Pr
(1)
(1)| Pr
(1)
(1
)
a
a
2
2
1
222
2
0
2
1
2
2
.
For k = 1, this probability is 1 – β. As k gets large, the probability, which is the
power, decreases.
Example:
Suppose:
4.0
0
2
σ=
, n = 20, and S = 2.1. If 1 – β = 0.95, then
n(1)
30.144
1
2
χ−
−β
.
Since
=≤
σ
χ−
=≈
−β
S
n
n4.41
1
(1)
4
19
30.144 6.35
2
0
2
1
2
we reject H
0
. The power curve for this test is given in Figure3.1 (power as a
function of the multiplier, k).
Condence interval formulation:
σ=
χ−
β
nS
n
ˆ
(1)
(1
)
U
2
2
is an upper 100(1 − β) percent condence limit on σ. In the example,
nS
n
ˆ
(1)
(1)
(201)4.41
10.117
2.878 20 1 10.117
U
2
2
0.05
2
()
()
σ=
χ−
=
≈χ−≈
β
.
45Variances (Standard Deviations) and Coefficients of Variation
Computational considerations:
SAS code
libname stuff 'H:\Personal Data\Equivalence & Noninferiority\
Programs & Output';
data calc;
set stuff.d20121107_test_3_1_example_data;
run;
proc means data = calc;
var X sig0 beta;
output out = onemean MEAN = xbar popsig betaprob
VAR=sampvar N = n1;
run;
data outcalc;
set onemean;
upplim = (popsig**2)*cinv(1-betaprob,n1-1)/(n1-1);
run;
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
Power
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 21.91.81.71.61.51.41.31.2
k
FIGURE 3.1
Test 3.1, power curve for testing a single variance.
46 Equivalence and Noninferiority Tests
proc print data = outcalc;/* has vars xbar popsig betaprob
sampvar n1 upplim */
run;
The SAS System 13:53 Wednesday, November 7, 2012 2
The MEANS Procedure
Variable Label N Mean Std Dev Minimum Maximum
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
X X 30 0.1613638 0.7395784 -1.5758867 1.5200489
sig0 sig0 30 1.2000000 0 1.2000000 1.2000000
beta beta 30 0.0500000 0 0.0500000 0.0500000
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
The SAS System 13:53 Wednesday, November 7, 2012 3
Obs _TYPE_ _FREQ_ xbar popsig betaprob sampvar n1 upplim
1 0 30 0.161 1.200 0.05 0.54698 30 2.11317
JMP Data Table and formulas (Figure3.2)
FIGURE 3.2
Test 3.1, JMP.
47Variances (Standard Deviations) and Coefficients of Variation
Test 3.2 Comparison of Two Variances (One-Sided)
Parameters:
σ
1
2
= variance of population 1
σ
2
2
= variance of population 2
k
0
2
= maximum tolerable ratio of the two variances
σ
σ
1
2
2
2
1 – β = power to reject the null if
σ
σ
= k
1
2
2
2
0
2
.
Hypotheses:
σ
σ
>
Hk
:
0
1
2
2
2
0
2
σ
σ
Hk
:
1
1
2
2
2
0
2
Data:
S
1
= sample standard deviation, sampled from population 1
S
2
= sample standard deviation, sampled from population 2
n
1
= sample size from population 1
n
2
= sample size from population 2
In general, the formula employed here for sample standard deviation is
assumed to be
()
=
=
S
n
XX
1
1
i
i
n
2
1
.
Critical value(s):
Reject H
0
if:
≤−
−β
nS
nSk
Fn n
(1)
(1)
1
(1
,1)
11
2
22
2
0
2
11 2
.

Get Equivalence and Noninferiority Tests for Quality, Manufacturing and Test Engineers now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.