Chapter 8: Unsupervised Machine Learning

In the previous two chapters, you were introduced to the supervised learning class of machine learning algorithms, their real-world applications, and how to implement them at scale using Spark MLlib. In this chapter, you will be introduced to the unsupervised learning category of machine learning, where you will learn about parametric and non-parametric unsupervised algorithms. A few real-world applications of clustering and association algorithms will be presented to help you understand the applications of unsupervised learning to solve real-life problems. You will gain basic knowledge and understanding of clustering and association problems when using unsupervised machine learning. We will also look ...

Get Essential PySpark for Scalable Data Analytics now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.