Skip to Content
Essential PySpark for Scalable Data Analytics
book

Essential PySpark for Scalable Data Analytics

by Sreeram Nudurupati
October 2021
Beginner to intermediate
322 pages
7h 27m
English
Packt Publishing
Content preview from Essential PySpark for Scalable Data Analytics

Chapter 9: Machine Learning Life Cycle Management

In the previous chapters, we explored the basics of scalable machine learning using Apache Spark. Algorithms dealing with supervised and unsupervised learning were introduced and their implementation details were presented using Apache Spark MLlib. In real-world scenarios, it is not sufficient to just train one model. Instead, multiple versions of the same model must be built using the same dataset by varying the model parameters to get the best possible model. Also, the same model might not be suitable for all applications, so multiple models are trained. Thus, it is necessary to track various experiments, their parameters, their metrics, and the version of the data they were trained on. Furthermore, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Data Analytics with Hadoop

Data Analytics with Hadoop

Benjamin Bengfort, Jenny Kim
Data Science on AWS

Data Science on AWS

Chris Fregly, Antje Barth

Publisher Resources

ISBN: 9781800568877Supplemental Content