CHAPTER 4
MODELING WITH SYSTEMS OF LINEAR DIFFERENCE EQUATIONS
4.1. MODELING WITH MARKOV CHAINS
In this section we discuss a special class of finite stochastic processes. We consider a sequence of finite experiments in which the outcomes and associated probabilities at each stage depend only on the outcomes and associated probabilities of the immediately preceding stage. Such a process is called a Markov process or a Markov chain. The Markov chains (processes) are named after the Russian mathematician Andrey Andreyevich Markov (1856–1922). Let’s investigate the following population movement model.
4.1.1. A Population Movement Model
We consider a simple model of population movement between a certain city and its surrounding suburbs. For simplicity, we assume the following:
Under these two assumptions the total population in the city and the suburbs is the same every year. Assume that the demographic studies showed that during 2000, 6% of the city population move to suburbs and 2% of the suburb population move to the city. This means that 94% of the city population stays in the city and 98% of the suburb population stays in the suburb.
Get Explorations of Mathematical Models in Biology with MATLAB now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.