Chapter 6Bootstrap Methods in Statistics of Extremes

M. Ivette Gomes1, Frederico Caeiro2, Lígia Henriques-Rodrigues3 and B.G. Manjunath4

1Universidade de Lisboa, FCUL, DEIO and CEAUL, Portugal

2Universidade Nova de Lisboa, FCT and CMA, Portugal

3Universidade de São Paulo, IME and CEAUL, Brazil

4Universidade de Lisboa, CEAUL, Portugal

AMS 2010 subject classification. Primary 62G32, 62E20; Secondary 65C05.
AMS 2000 subject classification. Primary 62G32, 62E20; Secondary 62G09, 62G30.

6.1 Introduction

Let c06-math-0002 be a random sample from an underlying cumulative distribution function (CDF) c06-math-0003. If we assume that c06-math-0004 is known, we can easily estimate the sampling distribution of any estimator c06-math-0005 of an unknown parameter c06-math-0006 through the use of a Monte Carlo simulation, described in the following algorithm:

  1. S1.  For c06-math-0007,
    1. S1.1  generate random samples ,
    2. S1.2  and compute .
  2. S2.  On the basis of the output , after ...

Get Extreme Events in Finance now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.