V˙=e2α+er=1Ni=1Iαsgnexi2+arix˙iqw¯~r+(1q)w¯~ry˙+frΔw¯~r+frΔw¯~r+1γα˙(αα*)V˙<e2α+er=1Ni=1IαBx2+BaBx˙qw¯~r+(1q)w¯~r+By˙BfBΔw+1γα˙(αα*)

si109_e

Considering the upper bounds of xi’s, x˙isi110_e, and ari’s as in the assumptions of Theorem 7.2, we have:

V˙<e2α+er=1NIαBx2+IBaBx˙qw¯~r+(1q)w¯~r+By˙+BfBΔw+1γα˙(αα*)<e2α+eIαBx2+IBaBx˙qr=1Nw¯~r+(1q)r=1Nw¯~r+By˙+1γα˙(αα*)

si111_e

So that:

V˙<e2α+eIαBx2+IBaBx˙+By˙+BfBΔw+1γα˙(αα*)

Get Fuzzy Neural Networks for Real Time Control Applications now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.