1.3

My Approach to Modern Geotechnical Engineering Practice – An Overview

1.3.1 Introduction

This book is intended to bridge the gap between geotechnical material covered in university civil engineering course work and the geotechnical topics required for practicing civil, structural, and geotechnical engineers to solve real world problems. Over the past decade or so there has been a tug of war between competing groups for the size and content of curricula included in undergraduate civil engineering programs. Several groups, the American Society of Civil Engineers comes to mind, have adopted programs requiring a Masters degree or an additional 30 credit hours of specialized training beyond the bachelor’s degree to qualify for a professional engineering license. Will these additional training requirements discourage potential engineering students from entering the profession? Maybe it will. The fact remains that additional knowledge and skills beyond the bachelor’s degree and even beyond a Professional Engineer’s License are required to become a fully competent senior engineer.

For a long time, I’ve had the idea for a book to explain practical geotechnical problem solving to practicing engineers. My basic thought was to discuss alternate analysis methods and approaches. I’m not embarrassed to admit that I have struggled for years with many geotechnical topics, conflicts between competing theories of soil mechanics, and issues of increasing complexity, as discussed in Section 1.2. ...

Get Geotechnical Problem Solving now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.