Chapter 1

Introduction

This book documents engineering guidelines and design practices that can be used by spacecraft designers to minimize the detrimental effects of spacecraft surface and internal charging in certain space environments. Chapter 2 covers space charging/electrostatic discharge background and orientation; Chapter 3, design guidelines; Chapter 4, spacecraft test techniques; Chapter 5, control and monitoring methods; and Chapter 6, materials that should or should not be considered for charging control. The appendixes contain a collection of useful material intended to support the main body of the document. Despite our desire that this be an all-encompassing guideline, this document cannot do that. It is a narrowly focused snapshot of existing technology, not a research report, and does not include certain related technologies or activities as clarified further below.

In-space charging effects are caused by interactions between the in-flight plasma environment and spacecraft materials and electronic subsystems. Possible detrimental effects of spacecraft charging include disruption of or damage to subsystems (such as power, navigation, communications, or instrumentation) because of field buildup and electrostatic discharge as a result of a spacecraft's passage through the space plasma and high-energy particle environments. Charges can also attract contaminants, affecting thermal properties, optical instruments, and solar arrays; and they can change particle trajectories, ...

Get Guide to Mitigating Spacecraft Charging Effects now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.