Chapter 69
Semidefinite Programming
Henry Wolkowicz
University of Waterloo
69.1 Introduction
Semidefinite programming (SDP) refers to optimization problems where variables X in the objective function or constraints can be symmetric matrices restricted to the cone of positive semidefinite matrices. (We restrict ourselves to real symmetric matrices, Sn, since the vast majority of applications are for the real case. The complex case requires using the complex inner-product space.) An example of a simple linear SDP is
where T : Sn → ℝm. The details are given in the definitions in Section 69.2; the SDP relaxation of the Max-Cut problem is given in Example 1 in this section. The linear SDP is a generalization of ...
Get Handbook of Linear Algebra, 2nd Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.