Important evaluation metrics – classification algorithms

Most of the metrics used to assess a classification model are based on the values that we get in the four quadrants of a confusion matrix. Let's begin this section by understanding what it is:

  • Confusion matrix: It is the cornerstone of evaluating a classification model (that is, classifier). As the name stands, the matrix is sometimes confusing. Let's try to visualize the confusion matrix as two axes in a graph. The x axis label is prediction, with two values—Positive and Negative. Similarly, the y axis label is actually with the same two values—Positive and Negative, as shown in the following figure. This matrix is a table that contains the information about the count of actual and ...

Get Hands-On Automated Machine Learning now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.