O'Reilly logo

Hands-On Automated Machine Learning by Umit Mert Cakmak, Sibanjan Das

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Autoencoders

An autoencoder is a type of DL which can be used for unsupervised learning. It is similar to other dimensionality reduction techniques such as Principal Component Analysis (PCA) which we studied earlier. However, PCA projects data from higher dimensions to lower dimensions using linear transformation, but autoencoders use non-linear transformations.

In an autoencoder, there are two parts to its structure:

  • Encoder: This part compresses the input into a fewer number of elements or bits. The input is compressed to the maximum point, which is known as latent space or bottleneck. These compressed bits are known as encoded bits.
  • Decoder: The decoder tries to reconstruct the input based on the encoded bits. If the decoder can reproduce ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required