Convolution

Chapter 5, Convolutional Neural Networks, covered the theory behind CNNs, and convolution of course has been part of that presentation. Let's do a recap of this concept from a mathematical and practical perspective before moving on to object recognition. In mathematics, convolution is an operation on two functions that produces a third function, which is the result of the integral of the product between the first two, one of which is flipped:

Convolution is heavily used in 2D image processing and signal filtering.

To better understand what happens behind the scenes, here's a simple Python code example of 1D convolution with NumPy ...

Get Hands-On Deep Learning with Apache Spark now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.