Skip to Main Content
Hands-On Ensemble Learning with R
book

Hands-On Ensemble Learning with R

by Prabhanjan Narayanachar Tattar
July 2018
Beginner to intermediate content levelBeginner to intermediate
376 pages
9h 1m
English
Packt Publishing
Content preview from Hands-On Ensemble Learning with R

Random Forest nuances

The GC_Random_Forest.pdf file consists of the 500 trees which serve as the homogeneous learners in the random forest ensemble. It is well known that a decision tree has a nice and clear interpretation. This is because it shows how one traverses the path to a terminal node. The random selection of features at each split and the bootstrap samples lead to the setting up of the random forest. Refer to the figure Trees of the Random Forest, which depicts trees numbered 78, 176, 395, and 471. The first split across the four trees is respectively purpose, amount, property, and duration. The second split for the first left side of these four trees is employed, resident, purpose, and amount, respectively. It is a cumbersome exercise ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Deep Learning with R

Hands-On Deep Learning with R

Rodger Devine, Michael Pawlus
Learning Bayesian Models with R

Learning Bayesian Models with R

Hari Manassery Koduvely
Advanced Machine Learning with R

Advanced Machine Learning with R

Cory Lesmeister, Dr. Sunil Kumar Chinnamgari

Publisher Resources

ISBN: 9781788624145Supplemental Content