Discriminator architecture

The architecture of the discriminator network of pix2pix is as follows:

Discriminator architecture of pix2pix

A pair of samples (one from each collection) are concatenated along the depth channel, and this 6-channel image is treated as the actual input of the discriminator network. The discriminator network maps the 6-channel 256x256 image to a 1-channel 30x30 image, which is used to calculate the discriminator loss.

The discriminator network, netD, is created by the models.networks.define_G method. By default, it takes "basic" as the argument value of netD, which is defined at line 33 in options/base_options.py ...

Get Hands-On Generative Adversarial Networks with PyTorch 1.x now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.