Choosing an optimization method

Here, we will only discuss gradient-based optimization methods, which are most commonly used in GANs. Different gradient methods have their own strengths and weaknesses. There isn't a universal optimization method that can solve every problem. Therefore, we should choose them wisely when it comes to different practical problems. Let's have a look at some now:

  1. SGD (calling optim.SGD with momentum=0 and nesterov=False): It works fast and well for shallow networks. However, it can be very slow for deeper networks, and may not even converge for deep networks:

In this equation, is the parameters at iteration step ...

Get Hands-On Generative Adversarial Networks with PyTorch 1.x now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.