Chapter 8: XGBoost Alternative Base Learners
In this chapter, you will analyze and apply different base learners in XGBoost. In XGBoost, base learners are the individual models, most commonly trees, that are iterated upon for each boosting round. Along with the default decision tree, which XGBoost defines as gbtree, additional options for base learners include gblinear and dart. Furthermore, XGBoost has its own implementations of random forests as base learners and as tree ensemble algorithms that you will experiment with in this chapter.
By learning how to apply alternative base learners, you will greatly extend your range with XGBoost. You will have the capacity to build many more models and you will learn new approaches to developing linear, ...
Get Hands-On Gradient Boosting with XGBoost and scikit-learn now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.