Skip to Content
Hands-On Graph Neural Networks Using Python
book

Hands-On Graph Neural Networks Using Python

by Maxime Labonne
April 2023
Intermediate to advanced
354 pages
8h 22m
English
Packt Publishing
Content preview from Hands-On Graph Neural Networks Using Python

12

Learning from Heterogeneous Graphs

In the previous chapter, we tried to generate realistic molecules that contain different types of nodes (atoms) and edges (bonds). We also observe this kind of behavior in other applications, such as recommender systems (users and items), social networks (followers and followees), or cybersecurity (routers and servers). We call these kinds of graphs heterogeneous, as opposed to homogeneous graphs, which only involve one type of node and one type of edge.

In this chapter, we will recap everything we know about homogeneous GNNs. We will introduce the message passing neural network framework to generalize the architectures we have seen so far. This summary will allow us to understand how to expand our framework ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Machine Learning with Scikit-Learn and PyTorch

Hands-On Machine Learning with Scikit-Learn and PyTorch

Aurélien Géron
Machine Learning with PyTorch and Scikit-Learn

Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili

Publisher Resources

ISBN: 9781804617526Supplemental Content