Let's imagine an arbitrary real n×n matrix, A. It is very possible that when we apply this matrix to some vector, they are scaled by a constant value. If this is the case, we say that the nonzero -dimensional vector is an eigenvector of A, and it corresponds to an eigenvalue λ. We write this as follows:
Let's consider again a matrix A that has an eigenvector x and a corresponding eigenvalue λ. Then, the following rules will apply: ...