Skip to Content
Hands-On Mathematics for Deep Learning
book

Hands-On Mathematics for Deep Learning

by Jay Dawani
June 2020
Intermediate to advanced
364 pages
13h 56m
English
Packt Publishing
Content preview from Hands-On Mathematics for Deep Learning

Derivatives

To start with, let's imagine a straight line with the following equation:

In the equation, the following aspects apply:

  • y is a function of x, often written simply as f(x) (which is the notation we will be predominantly using in the remainder of the book). In the preceding equation, the output value y is dependent on the input value x.
  • The m value is the gradient, which tells us how steep the straight line is, or what its rate of change is (that is, how much does a change in the x value affect the y value).
  • The value tells us whether ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Math for Deep Learning

Math for Deep Learning

Ronald T. Kneusel
Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga

Publisher Resources

ISBN: 9781838647292