Skip to Content
Hands-On Mathematics for Deep Learning
book

Hands-On Mathematics for Deep Learning

by Jay Dawani
June 2020
Intermediate to advanced
364 pages
13h 56m
English
Packt Publishing
Content preview from Hands-On Mathematics for Deep Learning

Memory-augmented neural networks

As the name suggests, Memory-Augmented Neural Networks (MANNs) are augmented using external memory (a storage buffer), which makes it easier for the model to learn and retain new information so as to not forget it later on. One of the approaches that is used is training a Neural Turing Machine (NTM) to learn a learning algorithm by altering the training setup and memory retrieval.

To adapt an NTM for meta learning, we need it to be able to encode information related to new tasks quickly, while also ensuring that the stored information can be accessed quickly. The way this works is we pass the information at the present time step and the corresponding label at the next time step, which forces the network to ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Math for Deep Learning

Math for Deep Learning

Ronald T. Kneusel
Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga

Publisher Resources

ISBN: 9781838647292