Skip to Main Content
Hands-On Reinforcement Learning with Python
book

Hands-On Reinforcement Learning with Python

by Sudharsan Ravichandiran
June 2018
Intermediate to advanced content levelIntermediate to advanced
318 pages
9h 24m
English
Packt Publishing
Content preview from Hands-On Reinforcement Learning with Python

On-policy Monte Carlo control

In Monte Carlo exploration starts, we explore all state-action pairs and choose the one that gives us the maximum value. But think of a situation where we have a large number of states and actions. In that case, if we use the MC-ES algorithm, then it will take a lot of time to explore all combinations of states and actions and to choose the best one. How do we get over this? There are two different control algorithms. On policy and off policy. In on-policy Monte Carlo control, we use the ε greedy policy. Let's understand what a greedy algorithm is.

A greedy algorithm picks up the best choice available at that moment, although that choice might not be optimal when you consider the overall problem. Consider you ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advanced Deep Learning with Python

Advanced Deep Learning with Python

Ivan Vasilev

Publisher Resources

ISBN: 9781788836524Supplemental Content