Skip to Main Content
Hands-On Reinforcement Learning with Python
book

Hands-On Reinforcement Learning with Python

by Sudharsan Ravichandiran
June 2018
Intermediate to advanced content levelIntermediate to advanced
318 pages
9h 24m
English
Packt Publishing
Content preview from Hands-On Reinforcement Learning with Python

Doom with DRQN

Now, let us see how to make use of the DRQN algorithm to train our agent to play Doom. We assign positive rewards for successfully killing the monsters and negative rewards for losing life, suicide, and losing ammo (bullets). You can get the complete code as a Jupyter notebook with the explanation at https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb. The credits for the code used in this section go to Luthanicus (https://github.com/Luthanicus/losaltoshackathon-drqn).

First, let us import all the necessary libraries:

import tensorflow as tfimport numpy as npimport matplotlib.pyplot as pltfrom vizdoom import ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advanced Deep Learning with Python

Advanced Deep Learning with Python

Ivan Vasilev

Publisher Resources

ISBN: 9781788836524Supplemental Content