Let's leverage Keras, load up the VGG-16 model, and freeze the convolution blocks so that we can use it as just an image feature extractor:
from keras.applications import vgg16 from keras.models import Model import keras vgg = vgg16.VGG16(include_top=False, weights='imagenet', input_shape=input_shape) output = vgg.layers[-1].output output = keras.layers.Flatten()(output) vgg_model = Model(vgg.input, output) vgg_model.trainable = False for layer in vgg_model.layers: layer.trainable = False vgg_model.summary() _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) (None, ...