Skip to Content
Hands-On Transfer Learning with Python
book

Hands-On Transfer Learning with Python

by Dipanjan Sarkar, Raghav Bali, Tamoghna Ghosh
August 2018
Intermediate to advanced
438 pages
12h 3m
English
Packt Publishing
Content preview from Hands-On Transfer Learning with Python

Visualizing feature maps

Visualizing a CNN model involves looking at the intermediate layer feature maps that are output by various convolution and pooling layers in a network, given a certain input. This gives a view into how an input is processed by the network, and how various image features are hierarchically extracted. All feature maps have three dimensions: width, height, and depth (channels). We will try to visualize them for the InceptionV3 model.

Let's take the following input photo of a Labrador dog, and try to visualize various feature maps. As the InceptionV3 model has huge depth, we will visualize just a few of the layers:

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Transfer Learning with TensorFlow 2.0

Hands-On Transfer Learning with TensorFlow 2.0

Margaret Maynard-Reid

Publisher Resources

ISBN: 9781788831307Supplemental Content