Appendix B. Proofs for Chapter 9

Theorem 1

Let X ∼ Pois ( λ ) and Y ∼ Pois ( μ ) . If Z = X + Y and τ = λ + μ , then Z ∼ Pois ( τ ) .

Proof

The definition of the Poisson process is:

P ( X = k ) = λ k e -λ k!

Consider P ( X + Y = k ) . This could happen if X = 0 and Y = k , or X = 1 and Y = k - 1 , etc. So:

P ( X + Y = k ) = P ( X = 0 , Y = k ) + P ( X = 1 , Y = k - 1 ) + ... + P ( X = k , Y = 0 ) = λ 0 e -λ 0! μ k e -μ k! + λ 1 e -λ 1! μ k-1 e -μ (k-1)! + ... + λ k e -λ k! μ 0 e -μ 0! = ∑ i=0 k λ i e -λ i! μ k-i e -μ (k-i)!

We can pull out e -λ and e -μ :

P ( X + Y = k ) = e -λ e -μ ∑ i=0 k 1 i!(k-i)! λ i μ k-i

But 1 i!(k-i)! = k i 1 k! , and we can pull the 1 k! out of the sum, too, so:

P ( X + Y = k ) = e -λ e -μ k! ∑ i=0 k k i λ i μ k-i

Now, since exponents are additive:

e -λ e -μ = e -λ-μ = e -(λ+μ) = e -τ

Finally, the binomial theorem states:

∑ k=0 n n k a k b n-k = (a+b) n

So:

P ( X + Y = k ) = e -λ e -μ k! ∑ i=0 k k i λ i μ k-i = e -(λ+μ) k! (λ+μ) k = τ k e -τ k! = Pois ( τ )

Theorem 2

If X ∼ Expon ( λ ) and Y ∼ Expon ( μ ) then P ( X < Y ) = λ μ+λ .

Proof

By the law of total probability:

P ( X < Y ) = ∫ 0 ∞ P ( X < Y | Y = y ) P ( Y = y ) d y

So:

P ( X < Y )

Get Implementing Service Level Objectives now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.