Bibliography
[ADÈ 82] ADÈS M., DION J.-P., LABELLE G., NANTHI K., “Recurrence formulae and the maximum likelihood estimation of the age in a simple branching process”, J. Appl. Probab., vol. 19, p. 776–784, 1982.
[ADO 72] ADOUL J. P. A., FRITCHMAN B. D., KANAL L. N., “A critical statistic for channels with memory”, IEEE Trans. Inform. Theory, vol. 18, p. 133–141, 1972.
[AGR 74] AGRESTI A., “Bounds of the extinction time distribution of a branching process”, Adv. Appl. Probab., vol. 6, p. 322–335, 1974.
[AGR 75] AGRESTI A., “On the extinction times of varying and random environment branching processes”, J. Appl. Probab., vol. 12, p. 31–46, 1975.
[ALS 87] ALSMEYER G., “Supperposed continuous renewal processes. A Markov renewal approach”, Stoch. Process. Appl., vol. 3, num. 3, p. 467–473, 1987.
[AND 91] ANDERSON W. J., Continuous-Time Markov Chains, Springer, New York, 1991.
[ARR 49] ARROW K. J., GIRSHICK M. A., BLACKWELL D., “Bayes and minimax solutions of sequential decision problems”, Econometrica, vol. 17, p. 213–244, 1949.
[ASH 72] ASH R. B., Real Analysis and Probability, Academic Press, New York, 1972.
[ASH 75] ASH R. B., GARDNER M. F., Topics in Stochastic Processes, Academic Press, New York, 1975.
[ASM 83] ASMUSSEN S., HERING H., Branching Processes, vol. 3 of Progress in Probability and Statistics, Birkhäuser, Boston-Basel-Stuttgart, 1983.
[ASM 87] ASMUSSEN S., Applied Probability and Queues, J. Wiley, New York, 1987.
[ASM 00] ASMUSSEN S., Ruin Probability, World Scientific, ...
Get Introduction to Stochastic Models now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.