Simulating a discrete-time Markov chain
Discrete-time Markov chains are stochastic processes that undergo transitions from one state to another in a state space. Transitions occur at every time step. Markov chains are characterized by their lack of memory in that the probability to undergo a transition from the current state to the next depends only on the current state, not the previous ones. These models are widely used in scientific and engineering applications.
Continuous-time Markov processes also exist and we will cover particular instances later in this chapter.
Markov chains are relatively easy to study mathematically and to simulate numerically. In this recipe, we will simulate a simple Markov chain modeling the evolution of a population. ...
Get IPython Interactive Computing and Visualization Cookbook now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.