Writing massively parallel code for NVIDIA graphics cards (GPUs) with CUDA

Graphics Processing Units (GPUs) are powerful processors specialized for real-time rendering. We find GPUs in virtually any computer, laptop, video game console, tablet, or smartphone. Their massively parallel architecture comprises tens to thousands of cores. The video game industry has been fostering the development of increasingly powerful GPUs over the last two decades.

Since the mid-2000s, GPUs are no longer limited to graphics processing. We can now implement scientific algorithms on a GPU. The only condition is that the algorithm follows the SIMD paradigm, where a sequence of instructions is executed in parallel with multiple data. This is called General Purpose ...

Get IPython Interactive Computing and Visualization Cookbook - Second Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.