Hierarchical clustering

Of the several clustering algorithms that we will examine in this chapter, hierarchical clustering is probably the simplest. The trade-off is that it works well only with small datasets in Euclidean space.

The general setup is that we have a dataset S of m points in Hierarchical clustering which we want to partition into a given number k of clusters C1, C2,..., Ck, where within each cluster the points are relatively close together. (B. J. Frey and D. Dueck, Clustering by Passing Messages Between Data Points Science 315, Feb 16, 2007 http://science.sciencemag.org/content/315/5814/972).

Here is the algorithm:

  1. Create a singleton cluster for each of the ...

Get Java Data Analysis now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.