Skip to Content
Java: Data Science Made Easy
book

Java: Data Science Made Easy

by Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
July 2017
Beginner to intermediate
715 pages
17h 3m
English
Packt Publishing
Content preview from Java: Data Science Made Easy

Word embeddings

So far, we have covered how to apply dimensionality reduction and clustering to textual data. There is another type of unsupervised Learning, which is specific to text: word embeddings. You have probably heard about Word2Vec, which is one such algorithm.

The problem Word embeddings tries to solve is how to embed words into low-dimensional vector space such that semantically close words are close in this space, and different words are far apart.

For example, cat and dog should be rather close there, but laptop and sky should be quite far apart.

Here, we will implement a Word Embedding algorithm based on the co-occurrence matrix. It builds upon the ideas of LSA: there we could represent the terms by the documents they contain. ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Data Science Cookbook

Java Data Science Cookbook

Rushdi Shams
Java for Data Science

Java for Data Science

Walter Molina, Richard M. Reese, Shilpi Saxena, Jennifer L. Reese

Publisher Resources

ISBN: 9781788475655Supplemental Content