Skip to Main Content
Java Deep Learning Projects
book

Java Deep Learning Projects

by Md. Rezaul Karim
June 2018
Intermediate to advanced content levelIntermediate to advanced
436 pages
10h 33m
English
Packt Publishing
Content preview from Java Deep Learning Projects

Distributed training on AWS deep learning AMI 9.0

So far, we have seen how to perform training and inferencing on a single GPU. However, to make the training even faster in a parallel and distributed way, having a machine or server with multiple GPUs is a viable option. An easy way to achieve this is by using AMAZON EC2 GPU compute instances.

For example, P2 is well suited for distributed deep learning frameworks that come with the latest binaries of deep learning frameworks (MXNet, TensorFlow, Caffe, Caffe2, PyTorch, Keras, Chainer, Theano, and CNTK) pre-installed in separate virtual environments.

An even bigger advantage is that they are fully configured with NVidia CUDA and cuDNN. Interested readers can take a look at https://aws.amazon.com/ec2/instance-types/p2/ ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Deep Learning Essentials

Java Deep Learning Essentials

Yusuke Sugomori
Machine Learning in Java - Second Edition

Machine Learning in Java - Second Edition

AshishSingh Bhatia, Bostjan Kaluza
Mastering Java Machine Learning

Mastering Java Machine Learning

Uday Kamath, Krishna Choppella

Publisher Resources

ISBN: 9781788997454Supplemental Content