Chapter 8. Deep Learning
In this chapter, we will focus on neural networks, often referred to as Deep Learning Networks (DLNs). This type of network is characterized as a multiple-layer neural network. Each of these layers are rained on the output of the previous layer, potentially identifying features and sub-features of the dataset. A feature hierarchy is created in this manner.
DLNs typically work with unstructured and unlabeled data, which constitute the vast bulk of data found in the world today. DLN will take this unstructured data, identify features, and try to reconstruct the original input. This approach is illustrated with Restricted Boltzmann Machines (RBMs) in Restricted Boltzmann Machines and with autoencoders in Deep autoencoders ...
Get Java for Data Science now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.