The first thing we must do is to discuss just what Java’s security goals are. The term “security” is vague unless it is discussed in some context; different expectations of the term “security” might lead us to expect that Java programs would be:
- Safe from malevolent programs
Programs should not be allowed to harm a user’s computing environment, such as Trojan horses and harmful programs that replicate, like computer viruses.
- Non-intrusive
Programs should be prevented from discovering private information on the host computer or the host computer’s network.
- Authenticated
The identity of parties involved in the program -- both the author and the user of the program -- should be verified.
- Encrypted
Data that the program sends and receives -- over the network or through a persistent store such as a filesystem or database -- should be encrypted.
- Audited
Potentially sensitive operations should always be logged.
- Well-defined
A well-defined security specification should be followed.
- Verified
Rules of operation should be set and verified.
- Well-behaved
Programs should be prevented from consuming too many system resources: too much CPU time, too much memory, and so on.
- C2 or B1 certified
Programs should have certification from the U.S. government that certain security procedures are followed.
In fact, while all of these features could be part of a secure system, only the first two were within the province of Java’s 1.0 default security model. Other items in the list have been introduced in later versions of Java: authentication was added in 1.1, encryption is available as an extension to the Java 2 platform, and auditing can be added to any Java program by providing an auditing security manager. Still others of these items will be added in the future. But the basic premise remains that Java security was originally and fundamentally designed to protect the information on a computer from being accessed or modified (including a modification that would introduce a virus) while still allowing the Java program to run on that computer.
The point driving this notion of security is the new distribution model for Java programs. One of the driving forces behind Java, of course, is its ability to download programs over a network and run those programs on another machine. This is something most computer users do today within the context of a Java-enabled browser, although the idea behind portable code like this is beginning to seep into other applications, such as those based on Jini technology. Coupled with the widespread growth of Internet use -- and the public-access nature of the Internet -- Java’s ability to bring programs to a user on an as-needed, just-in-time basis has been a strong reason for its rapid deployment and acceptance.
The nature of the Internet created a new and largely unprecedented requirement for programs to be free of viruses and Trojan horses. Computer users had always been used to purchasing shrink-wrapped software. Many soon began downloading software via FTP or other means and then running that software on their machines. But widespread downloading also led to a pervasive problem of malevolent attributes both in free and (ironically) in commercial software, a problem which continues unabated. The introduction of Java into this equation had the potential to multiply this problem by orders of magnitude, as computer users now download programs automatically and frequently.
For Java to succeed, it needed to circumvent the virus/Trojan horse problems that plagued other models of software distribution. Hence, the early work on Java focused on just that issue: Java programs are considered safe because they cannot install, run, or propagate viruses and because the program itself cannot perform any action that is harmful to the user’s computing environment. And in this context, safety means security. This is not to say that the other issues in the above list are not important -- each has its place and its importance (in fact, we’ll spend a great deal of time in this book on the third and fourth topics in that list). But the issues of protecting information and preventing viruses were considered most important; hence, features to provide that level of security were the first to be adopted. Like all parts of Java, its security model is evolving (and has evolved through its various releases); many of the notions about security in our list will eventually make their way into Java.
One of the primary goals of this book, then, is to explain Java’s security model and its evolution with each subsequent release. In the final analysis, whether or not Java is secure is a subjective judgment that individual users will have to make based on their own requirements. If all you want from Java is freedom from viruses, any release of Java should meet your needs. If you need to introduce authentication or encryption into your program, you’ll need to use a 1.1 or later release of Java. If you have a requirement that all operations be audited, you’ll need to build that auditing into your applications. If you really need conformance with a U.S. government-approved definition of security, Java is not the platform for you. We take a very pragmatic view of security in this book: the issue is not whether a system that lacks a particular feature qualifies as “secure” according to someone’s definition of security. The issue is whether Java possesses the features that meet your needs.
Get Java Security, 2nd Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.