O'Reilly logo

JMP 12 Multivariate Methods by SAS Institute

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Overview of Principal Component Analysis
A principal component analysis models the variation in a set of variables in terms of a smaller number of independent linear combinations (principal components) of those variables.
If you want to see the arrangement of points across many correlated variables, you can use principal component analysis to show the most prominent directions of the high-dimensional data. Using principal component analysis reduces the dimensionality of a set of data. Principal components representation is important in visualizing multivariate data by reducing it to graphable dimensions. Principal components is a way to picture the structure of the data as completely as possible by using as few variables as possible.
For

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required